ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1812.08108
  4. Cited By
Enhancing Robustness of Deep Neural Networks Against Adversarial Malware
  Samples: Principles, Framework, and AICS'2019 Challenge
v1v2v3 (latest)

Enhancing Robustness of Deep Neural Networks Against Adversarial Malware Samples: Principles, Framework, and AICS'2019 Challenge

19 December 2018
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
    AAML
ArXiv (abs)PDFHTML

Papers citing "Enhancing Robustness of Deep Neural Networks Against Adversarial Malware Samples: Principles, Framework, and AICS'2019 Challenge"

2 / 2 papers shown
Title
A Framework for Enhancing Deep Neural Networks Against Adversarial
  Malware
A Framework for Enhancing Deep Neural Networks Against Adversarial Malware
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
73
13
0
15 Apr 2020
MAB-Malware: A Reinforcement Learning Framework for Attacking Static
  Malware Classifiers
MAB-Malware: A Reinforcement Learning Framework for Attacking Static Malware Classifiers
Wei Song
Xuezixiang Li
Sadia Afroz
D. Garg
Dmitry Kuznetsov
Heng Yin
AAML
117
27
0
06 Mar 2020
1