Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.00210
Cited By
Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds
1 January 2019
Andrea Zanette
Emma Brunskill
OffRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Tighter Problem-Dependent Regret Bounds in Reinforcement Learning without Domain Knowledge using Value Function Bounds"
50 / 216 papers shown
Title
Nearly Minimax Optimal Reinforcement Learning for Linear Mixture Markov Decision Processes
Dongruo Zhou
Quanquan Gu
Csaba Szepesvári
19
203
0
15 Dec 2020
Minimax Regret for Stochastic Shortest Path with Adversarial Costs and Known Transition
Liyu Chen
Haipeng Luo
Chen-Yu Wei
26
32
0
07 Dec 2020
Accommodating Picky Customers: Regret Bound and Exploration Complexity for Multi-Objective Reinforcement Learning
Jingfeng Wu
Vladimir Braverman
Lin F. Yang
17
10
0
25 Nov 2020
Logarithmic Regret for Reinforcement Learning with Linear Function Approximation
Jiafan He
Dongruo Zhou
Quanquan Gu
17
92
0
23 Nov 2020
Value Function Approximations via Kernel Embeddings for No-Regret Reinforcement Learning
Sayak Ray Chowdhury
Rafael Oliveira
OffRL
17
3
0
16 Nov 2020
Experimental Design for Regret Minimization in Linear Bandits
Andrew Wagenmaker
Julian Katz-Samuels
Kevin G. Jamieson
9
16
0
01 Nov 2020
Improved Worst-Case Regret Bounds for Randomized Least-Squares Value Iteration
Priyank Agrawal
Jinglin Chen
Nan Jiang
27
18
0
23 Oct 2020
Local Differential Privacy for Regret Minimization in Reinforcement Learning
Evrard Garcelon
Vianney Perchet
Ciara Pike-Burke
Matteo Pirotta
26
32
0
15 Oct 2020
Nearly Minimax Optimal Reward-free Reinforcement Learning
Zihan Zhang
S. Du
Xiangyang Ji
OffRL
17
31
0
12 Oct 2020
Episodic Reinforcement Learning in Finite MDPs: Minimax Lower Bounds Revisited
O. D. Domingues
Pierre Ménard
E. Kaufmann
Michal Valko
8
96
0
07 Oct 2020
Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs
Jiafan He
Dongruo Zhou
Quanquan Gu
16
37
0
01 Oct 2020
Is Reinforcement Learning More Difficult Than Bandits? A Near-optimal Algorithm Escaping the Curse of Horizon
Zihan Zhang
Xiangyang Ji
S. Du
OffRL
12
103
0
28 Sep 2020
A Sample-Efficient Algorithm for Episodic Finite-Horizon MDP with Constraints
K. C. Kalagarla
Rahul Jain
Pierluigi Nuzzo
28
52
0
23 Sep 2020
Oracle-Efficient Regret Minimization in Factored MDPs with Unknown Structure
Aviv A. Rosenberg
Yishay Mansour
15
11
0
13 Sep 2020
Improved Exploration in Factored Average-Reward MDPs
M. S. Talebi
Anders Jonsson
Odalric-Ambrym Maillard
9
8
0
09 Sep 2020
Provably Efficient Reward-Agnostic Navigation with Linear Value Iteration
Andrea Zanette
A. Lazaric
Mykel J. Kochenderfer
Emma Brunskill
24
64
0
18 Aug 2020
Reinforcement Learning with Trajectory Feedback
Yonathan Efroni
Nadav Merlis
Shie Mannor
14
41
0
13 Aug 2020
Fast active learning for pure exploration in reinforcement learning
Pierre Ménard
O. D. Domingues
Anders Jonsson
E. Kaufmann
Edouard Leurent
Michal Valko
6
94
0
27 Jul 2020
A Provably Efficient Sample Collection Strategy for Reinforcement Learning
Jean Tarbouriech
Matteo Pirotta
Michal Valko
A. Lazaric
OffRL
25
16
0
13 Jul 2020
A Kernel-Based Approach to Non-Stationary Reinforcement Learning in Metric Spaces
O. D. Domingues
Pierre Ménard
Matteo Pirotta
E. Kaufmann
Michal Valko
25
40
0
09 Jul 2020
A Unifying View of Optimism in Episodic Reinforcement Learning
Gergely Neu
Ciara Pike-Burke
6
66
0
03 Jul 2020
Adaptive Discretization for Model-Based Reinforcement Learning
Sean R. Sinclair
Tianyu Wang
Gauri Jain
Siddhartha Banerjee
Chao Yu
OffRL
19
21
0
01 Jul 2020
Model-based Reinforcement Learning: A Survey
Thomas M. Moerland
Joost Broekens
Aske Plaat
Catholijn M. Jonker
OffRL
33
47
0
30 Jun 2020
Lookahead-Bounded Q-Learning
Ibrahim El Shar
Daniel R. Jiang
VLM
16
8
0
28 Jun 2020
Towards Minimax Optimal Reinforcement Learning in Factored Markov Decision Processes
Yi Tian
Jian Qian
S. Sra
8
25
0
24 Jun 2020
Stochastic Shortest Path with Adversarially Changing Costs
Aviv A. Rosenberg
Yishay Mansour
AAML
24
33
0
20 Jun 2020
Provably adaptive reinforcement learning in metric spaces
Tongyi Cao
A. Krishnamurthy
17
7
0
18 Jun 2020
Task-agnostic Exploration in Reinforcement Learning
Xuezhou Zhang
Yuzhe Ma
Adish Singla
OffRL
20
49
0
16 Jun 2020
Q
Q
Q
-learning with Logarithmic Regret
Kunhe Yang
Lin F. Yang
S. Du
43
59
0
16 Jun 2020
Preference-based Reinforcement Learning with Finite-Time Guarantees
Yichong Xu
Ruosong Wang
Lin F. Yang
Aarti Singh
A. Dubrawski
23
53
0
16 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
33
82
0
15 Jun 2020
Adaptive Reward-Free Exploration
E. Kaufmann
Pierre Ménard
O. D. Domingues
Anders Jonsson
Edouard Leurent
Michal Valko
30
80
0
11 Jun 2020
Planning in Markov Decision Processes with Gap-Dependent Sample Complexity
Anders Jonsson
E. Kaufmann
Pierre Ménard
O. D. Domingues
Edouard Leurent
Michal Valko
9
31
0
10 Jun 2020
A Model-free Learning Algorithm for Infinite-horizon Average-reward MDPs with Near-optimal Regret
Mehdi Jafarnia-Jahromi
Chen-Yu Wei
Rahul Jain
Haipeng Luo
20
7
0
08 Jun 2020
MOPO: Model-based Offline Policy Optimization
Tianhe Yu
G. Thomas
Lantao Yu
Stefano Ermon
James Zou
Sergey Levine
Chelsea Finn
Tengyu Ma
OffRL
25
754
0
27 May 2020
Reinforcement Learning with General Value Function Approximation: Provably Efficient Approach via Bounded Eluder Dimension
Ruosong Wang
Ruslan Salakhutdinov
Lin F. Yang
23
55
0
21 May 2020
Reinforcement Learning with Feedback Graphs
Christoph Dann
Yishay Mansour
M. Mohri
Ayush Sekhari
Karthik Sridharan
14
9
0
07 May 2020
Is Long Horizon Reinforcement Learning More Difficult Than Short Horizon Reinforcement Learning?
Ruosong Wang
S. Du
Lin F. Yang
Sham Kakade
OffRL
10
52
0
01 May 2020
Almost Optimal Model-Free Reinforcement Learning via Reference-Advantage Decomposition
Zihan Zhang
Yuanshuo Zhou
Xiangyang Ji
OffRL
8
155
0
21 Apr 2020
Tightening Exploration in Upper Confidence Reinforcement Learning
Hippolyte Bourel
Odalric-Ambrym Maillard
M. S. Talebi
22
31
0
20 Apr 2020
Kernel-Based Reinforcement Learning: A Finite-Time Analysis
O. D. Domingues
Pierre Ménard
Matteo Pirotta
E. Kaufmann
Michal Valko
9
18
0
12 Apr 2020
Is Temporal Difference Learning Optimal? An Instance-Dependent Analysis
K. Khamaru
A. Pananjady
Feng Ruan
Martin J. Wainwright
Michael I. Jordan
OffRL
11
47
0
16 Mar 2020
Provably Efficient Exploration for Reinforcement Learning Using Unsupervised Learning
Fei Feng
Ruosong Wang
W. Yin
S. Du
Lin F. Yang
OffRL
SSL
30
7
0
15 Mar 2020
Exploration-Exploitation in Constrained MDPs
Yonathan Efroni
Shie Mannor
Matteo Pirotta
33
169
0
04 Mar 2020
Learning Near Optimal Policies with Low Inherent Bellman Error
Andrea Zanette
A. Lazaric
Mykel Kochenderfer
Emma Brunskill
OffRL
17
221
0
29 Feb 2020
Near-optimal Regret Bounds for Stochastic Shortest Path
Alon Cohen
Haim Kaplan
Yishay Mansour
Aviv A. Rosenberg
12
53
0
23 Feb 2020
Optimistic Policy Optimization with Bandit Feedback
Yonathan Efroni
Lior Shani
Aviv A. Rosenberg
Shie Mannor
13
90
0
19 Feb 2020
Learning Zero-Sum Simultaneous-Move Markov Games Using Function Approximation and Correlated Equilibrium
Qiaomin Xie
Yudong Chen
Zhaoran Wang
Zhuoran Yang
39
124
0
17 Feb 2020
Regret Bounds for Discounted MDPs
Shuang Liu
H. Su
OffRL
8
19
0
12 Feb 2020
Provable Self-Play Algorithms for Competitive Reinforcement Learning
Yu Bai
Chi Jin
SSL
22
148
0
10 Feb 2020
Previous
1
2
3
4
5
Next