Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.03357
Cited By
v1
v2 (latest)
No-Regret Bayesian Optimization with Unknown Hyperparameters
10 January 2019
Felix Berkenkamp
Angela P. Schoellig
Andreas Krause
TPM
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"No-Regret Bayesian Optimization with Unknown Hyperparameters"
19 / 19 papers shown
Title
Improved Regret Bounds for Gaussian Process Upper Confidence Bound in Bayesian Optimization
Shogo Iwazaki
GP
53
0
0
02 Jun 2025
Reliable algorithm selection for machine learning-guided design
Clara Fannjiang
Ji Won Park
95
0
0
26 Mar 2025
Every Call is Precious: Global Optimization of Black-Box Functions with Unknown Lipschitz Constants
Fares Fourati
Salma Kharrat
Vaneet Aggarwal
Mohamed-Slim Alouini
116
0
0
06 Feb 2025
Bayesian Optimisation with Unknown Hyperparameters: Regret Bounds Logarithmically Closer to Optimal
Juliusz Ziomek
Masaki Adachi
Michael A. Osborne
93
1
0
14 Oct 2024
Batch Bayesian Optimization for Replicable Experimental Design
Zhongxiang Dai
Q. Nguyen
Sebastian Shenghong Tay
Daisuke Urano
Richalynn Leong
Bryan Kian Hsiang Low
Patrick Jaillet
42
5
0
02 Nov 2023
Self-Correcting Bayesian Optimization through Bayesian Active Learning
Carl Hvarfner
E. Hellsten
Frank Hutter
Luigi Nardi
GP
90
16
0
21 Apr 2023
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu
Haowei Wang
Zhongxiang Dai
K. H. Low
Szu Hui Ng
65
4
0
10 May 2022
Tuning Particle Accelerators with Safety Constraints using Bayesian Optimization
Johannes Kirschner
Mojmír Mutný
Andreas Krause
J. C. D. Portugal
N. Hiller
J. Snuverink
37
12
0
26 Mar 2022
Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization
Hung The Tran
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
50
14
0
15 Mar 2022
Meta-Learning Hypothesis Spaces for Sequential Decision-making
Parnian Kassraie
Jonas Rothfuss
Andreas Krause
OffRL
107
6
0
01 Feb 2022
Misspecified Gaussian Process Bandit Optimization
Ilija Bogunovic
Andreas Krause
86
45
0
09 Nov 2021
Pre-trained Gaussian processes for Bayesian optimization
Zehao Wang
George E. Dahl
Kevin Swersky
Chansoo Lee
Zachary Nado
Justin Gilmer
Jasper Snoek
Zoubin Ghahramani
151
46
0
16 Sep 2021
Green Machine Learning via Augmented Gaussian Processes and Multi-Information Source Optimization
Antonio Candelieri
R. Perego
Francesco Archetti
47
19
0
25 Jun 2020
Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning
Sebastian Curi
Felix Berkenkamp
Andreas Krause
130
85
0
15 Jun 2020
Reward Design for Driver Repositioning Using Multi-Agent Reinforcement Learning
Zhenyu Shou
Xuan Di
83
57
0
17 Feb 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
George Wynne
F. Briol
Mark Girolami
85
56
0
29 Jan 2020
Learning to Optimize Computational Resources: Frugal Training with Generalization Guarantees
Maria-Florina Balcan
Tuomas Sandholm
Ellen Vitercik
70
16
0
26 May 2019
Sampling Acquisition Functions for Batch Bayesian Optimization
Alessandro De Palma
Celestine Mendler-Dünner
Thomas Parnell
Andreea Anghel
H. Pozidis
56
13
0
22 Mar 2019
Contextual Bandits with Continuous Actions: Smoothing, Zooming, and Adapting
A. Krishnamurthy
John Langford
Aleksandrs Slivkins
Chicheng Zhang
OffRL
175
65
0
05 Feb 2019
1