ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.03796
42
12

Learning Pairwise Relationship for Multi-object Detection in Crowded Scenes

12 January 2019
Yu Liu
Lingqiao Liu
S. Hamid Rezatofighi
Thanh-Toan Do
Javen Qinfeng Shi
Ian Reid
    ObjD
ArXiv (abs)PDFHTML
Abstract

As the post-processing step for object detection, non-maximum suppression (GreedyNMS) is widely used in most of the detectors for many years. It is efficient and accurate for sparse scenes, but suffers an inevitable trade-off between precision and recall in crowded scenes. To overcome this drawback, we propose a Pairwise-NMS to cure GreedyNMS. Specifically, a pairwise-relationship network that is based on deep learning is learned to predict if two overlapping proposal boxes contain two objects or zero/one object, which can handle multiple overlapping objects effectively. Through neatly coupling with GreedyNMS without losing efficiency, consistent improvements have been achieved in heavily occluded datasets including MOT15, TUD-Crossing and PETS. In addition, Pairwise-NMS can be integrated into any learning based detectors (Both of Faster-RCNN and DPM detectors are tested in this paper), thus building a bridge between GreedyNMS and end-to-end learning detectors.

View on arXiv
Comments on this paper