ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.06328
  4. Cited By
Estimating the effective dimension of large biological datasets using
  Fisher separability analysis

Estimating the effective dimension of large biological datasets using Fisher separability analysis

18 January 2019
L. Albergante
Jonathan Bac
A. Zinovyev
ArXiv (abs)PDFHTML

Papers citing "Estimating the effective dimension of large biological datasets using Fisher separability analysis"

21 / 21 papers shown
Measuring the Intrinsic Dimension of Earth Representations
Measuring the Intrinsic Dimension of Earth Representations
Arjun Rao
M. Rußwurm
Konstantin Klemmer
Esther Rolf
272
3
0
03 Nov 2025
A Novel Approach for Intrinsic Dimension Estimation
Kadir Özçoban
Murat Manguoğlu
Emrullah Fatih Yetkin
223
1
0
13 Mar 2025
Data-Informed Model Complexity Metric for Optimizing Symbolic Regression Models
Data-Informed Model Complexity Metric for Optimizing Symbolic Regression Models
Nathan Haut
Zenas Huang
Adam Alessio
138
2
0
29 Jan 2025
Geometric Signatures of Compositionality Across a Language Model's Lifetime
Geometric Signatures of Compositionality Across a Language Model's LifetimeAnnual Meeting of the Association for Computational Linguistics (ACL), 2024
Jin Hwa Lee
Thomas Jiralerspong
Lei Yu
Yoshua Bengio
Emily Cheng
CoGe
673
10
0
02 Oct 2024
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension
  Estimation with Diffusion Models
A Geometric View of Data Complexity: Efficient Local Intrinsic Dimension Estimation with Diffusion Models
Hamidreza Kamkari
Brendan Leigh Ross
Rasa Hosseinzadeh
Jesse C. Cresswell
Gabriel Loaiza-Ganem
DiffM
275
29
0
05 Jun 2024
Bridging Information-Theoretic and Geometric Compression in Language
  Models
Bridging Information-Theoretic and Geometric Compression in Language Models
Emily Cheng
Corentin Kervadec
Marco Baroni
379
26
0
20 Oct 2023
Impact of time and note duration tokenizations on deep learning symbolic
  music modeling
Impact of time and note duration tokenizations on deep learning symbolic music modelingInternational Society for Music Information Retrieval Conference (ISMIR), 2023
Nathan Fradet
Nicolas Gutowski
F. Chhel
Jean-Pierre Briot
194
9
0
12 Oct 2023
Relative intrinsic dimensionality is intrinsic to learning
Relative intrinsic dimensionality is intrinsic to learningInternational Conference on Artificial Neural Networks (ICANN), 2023
Oliver J. Sutton
Qinghua Zhou
Alexander N. Gorban
I. Tyukin
319
3
0
10 Oct 2023
Understanding the Structure of QM7b and QM9 Quantum Mechanical Datasets
  Using Unsupervised Learning
Understanding the Structure of QM7b and QM9 Quantum Mechanical Datasets Using Unsupervised Learning
Julio J. Valdés
A. Tchagang
144
3
0
25 Sep 2023
Intrinsic Dimension Estimation for Robust Detection of AI-Generated
  Texts
Intrinsic Dimension Estimation for Robust Detection of AI-Generated TextsNeural Information Processing Systems (NeurIPS), 2023
Eduard Tulchinskii
Kristian Kuznetsov
Laida Kushnareva
D. Cherniavskii
S. Barannikov
Irina Piontkovskaya
Sergey I. Nikolenko
Evgeny Burnaev
DeLMO
330
118
0
07 Jun 2023
Byte Pair Encoding for Symbolic Music
Byte Pair Encoding for Symbolic MusicConference on Empirical Methods in Natural Language Processing (EMNLP), 2023
Nathan Fradet
Nicolas Gutowski
F. Chhel
Jean-Pierre Briot
209
24
0
27 Jan 2023
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
LIDL: Local Intrinsic Dimension Estimation Using Approximate LikelihoodInternational Conference on Machine Learning (ICML), 2022
Piotr Tempczyk
Rafał Michaluk
Łukasz Garncarek
Przemysław Spurek
Jacek Tabor
Adam Goliñski
290
34
0
29 Jun 2022
Quasi-orthogonality and intrinsic dimensions as measures of learning and
  generalisation
Quasi-orthogonality and intrinsic dimensions as measures of learning and generalisationIEEE International Joint Conference on Neural Network (IJCNN), 2022
Qinghua Zhou
Alexander N. Gorban
Evgeny M. Mirkes
Jonathan Bac
A. Zinovyev
I. Tyukin
120
2
0
30 Mar 2022
Scikit-dimension: a Python package for intrinsic dimension estimation
Scikit-dimension: a Python package for intrinsic dimension estimation
Jonathan Bac
Evgeny M. Mirkes
Alexander N. Gorban
I. Tyukin
A. Zinovyev
212
112
0
06 Sep 2021
Trajectories, bifurcations and pseudotime in large clinical datasets:
  applications to myocardial infarction and diabetes data
Trajectories, bifurcations and pseudotime in large clinical datasets: applications to myocardial infarction and diabetes data
S. E. Golovenkin
Jonathan Bac
A. Chervov
Evgeny M. Mirkes
Y. Orlova
E. Barillot
A. Gorban
A. Zinovyev
205
52
0
07 Jul 2020
Linear and Fisher Separability of Random Points in the d-dimensional
  Spherical Layer
Linear and Fisher Separability of Random Points in the d-dimensional Spherical LayerIEEE International Joint Conference on Neural Network (IJCNN), 2020
Sergey V. Sidorov
N. Zolotykh
221
3
0
01 Feb 2020
Local intrinsic dimensionality estimators based on concentration of
  measure
Local intrinsic dimensionality estimators based on concentration of measureIEEE International Joint Conference on Neural Network (IJCNN), 2020
Jonathan Bac
A. Zinovyev
173
12
0
31 Jan 2020
High--Dimensional Brain in a High-Dimensional World: Blessing of
  Dimensionality
High--Dimensional Brain in a High-Dimensional World: Blessing of DimensionalityEntropy (Entropy), 2020
A. Gorban
V. A. Makarov
Ivan Y. Tyukin
193
40
0
14 Jan 2020
Blessing of dimensionality at the edge
Blessing of dimensionality at the edgeInformation Sciences (Inf. Sci.), 2019
I. Tyukin
Alexander N. Gorban
A. McEwan
Sepehr Meshkinfamfard
Lixin Tang
139
8
0
30 Sep 2019
Symphony of high-dimensional brain
Symphony of high-dimensional brainPhysics of Life Reviews (PLR), 2019
Alexander N. Gorban
V. Makarov
I. Tyukin
146
3
0
27 Jun 2019
Robust And Scalable Learning Of Complex Dataset Topologies Via Elpigraph
Robust And Scalable Learning Of Complex Dataset Topologies Via ElpigraphEntropy (Entropy), 2018
L. Albergante
Evgeny M. Mirkes
Huidong Chen
Alexis Martin
Louis Faure
E. Barillot
Luca Pinello
Alexander N. Gorban
A. Zinovyev
213
64
0
20 Apr 2018
1
Page 1 of 1