ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.07694
6
124

Explaining Models: An Empirical Study of How Explanations Impact Fairness Judgment

23 January 2019
Jonathan Dodge
Q. V. Liao
Yunfeng Zhang
Rachel K. E. Bellamy
Casey Dugan
    FaML
ArXivPDFHTML
Abstract

Ensuring fairness of machine learning systems is a human-in-the-loop process. It relies on developers, users, and the general public to identify fairness problems and make improvements. To facilitate the process we need effective, unbiased, and user-friendly explanations that people can confidently rely on. Towards that end, we conducted an empirical study with four types of programmatically generated explanations to understand how they impact people's fairness judgments of ML systems. With an experiment involving more than 160 Mechanical Turk workers, we show that: 1) Certain explanations are considered inherently less fair, while others can enhance people's confidence in the fairness of the algorithm; 2) Different fairness problems--such as model-wide fairness issues versus case-specific fairness discrepancies--may be more effectively exposed through different styles of explanation; 3) Individual differences, including prior positions and judgment criteria of algorithmic fairness, impact how people react to different styles of explanation. We conclude with a discussion on providing personalized and adaptive explanations to support fairness judgments of ML systems.

View on arXiv
Comments on this paper