ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09018
  4. Cited By
Provably efficient RL with Rich Observations via Latent State Decoding

Provably efficient RL with Rich Observations via Latent State Decoding

25 January 2019
S. Du
A. Krishnamurthy
Nan Jiang
Alekh Agarwal
Miroslav Dudík
John Langford
    OffRL
ArXivPDFHTML

Papers citing "Provably efficient RL with Rich Observations via Latent State Decoding"

14 / 14 papers shown
Title
On Generalization Across Environments In Multi-Objective Reinforcement Learning
Jayden Teoh
Pradeep Varakantham
Peter Vamplew
OffRL
57
1
0
02 Mar 2025
Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory
Learning a Fast Mixing Exogenous Block MDP using a Single Trajectory
Alexander Levine
Peter Stone
Amy Zhang
OffRL
53
0
0
03 Oct 2024
Invariant Causal Prediction for Block MDPs
Invariant Causal Prediction for Block MDPs
Amy Zhang
Clare Lyle
Shagun Sodhani
Angelos Filos
Marta Z. Kwiatkowska
Joelle Pineau
Y. Gal
Doina Precup
OffRL
AI4CE
OOD
75
140
0
12 Mar 2020
Is Q-learning Provably Efficient?
Is Q-learning Provably Efficient?
Chi Jin
Zeyuan Allen-Zhu
Sébastien Bubeck
Michael I. Jordan
OffRL
52
801
0
10 Jul 2018
Value Prediction Network
Value Prediction Network
Junhyuk Oh
Satinder Singh
Honglak Lee
65
332
0
11 Jul 2017
Curiosity-driven Exploration by Self-supervised Prediction
Curiosity-driven Exploration by Self-supervised Prediction
Deepak Pathak
Pulkit Agrawal
Alexei A. Efros
Trevor Darrell
LRM
SSL
96
2,423
0
15 May 2017
Count-Based Exploration with Neural Density Models
Count-Based Exploration with Neural Density Models
Georg Ostrovski
Marc G. Bellemare
Aaron van den Oord
Rémi Munos
74
616
0
03 Mar 2017
The Predictron: End-To-End Learning and Planning
The Predictron: End-To-End Learning and Planning
David Silver
H. V. Hasselt
Matteo Hessel
Tom Schaul
A. Guez
...
Gabriel Dulac-Arnold
David P. Reichert
Neil C. Rabinowitz
André Barreto
T. Degris
47
289
0
28 Dec 2016
Reinforcement Learning in Rich-Observation MDPs using Spectral Methods
Reinforcement Learning in Rich-Observation MDPs using Spectral Methods
Kamyar Azizzadenesheli
A. Lazaric
Anima Anandkumar
41
30
0
11 Nov 2016
Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Contextual Decision Processes with Low Bellman Rank are PAC-Learnable
Nan Jiang
A. Krishnamurthy
Alekh Agarwal
John Langford
Robert Schapire
87
417
0
29 Oct 2016
Reinforcement Learning of POMDPs using Spectral Methods
Reinforcement Learning of POMDPs using Spectral Methods
Kamyar Azizzadenesheli
A. Lazaric
Anima Anandkumar
27
127
0
25 Feb 2016
Deep Exploration via Bootstrapped DQN
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
58
1,302
0
15 Feb 2016
Selecting Near-Optimal Approximate State Representations in
  Reinforcement Learning
Selecting Near-Optimal Approximate State Representations in Reinforcement Learning
R. Ortner
Odalric-Ambrym Maillard
D. Ryabko
120
27
0
12 May 2014
PAC Bounds for Discounted MDPs
PAC Bounds for Discounted MDPs
Tor Lattimore
Marcus Hutter
64
188
0
17 Feb 2012
1