ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.09496
  4. Cited By
Characterizing the Shape of Activation Space in Deep Neural Networks
v1v2 (latest)

Characterizing the Shape of Activation Space in Deep Neural Networks

28 January 2019
Thomas Gebhart
Paul Schrater
Alan Hylton
    AAML
ArXiv (abs)PDFHTML

Papers citing "Characterizing the Shape of Activation Space in Deep Neural Networks"

5 / 5 papers shown
Title
Revisiting Point Cloud Completion: Are We Ready For The Real-World?
Revisiting Point Cloud Completion: Are We Ready For The Real-World?
Stuti Pathak
Prashant Kumar
Nicholus Mboga
Gunther Steenackers
R. Penne
Rudi Penne
521
0
0
26 Nov 2024
GLiDR: Topologically Regularized Graph Generative Network for Sparse
  LiDAR Point Clouds
GLiDR: Topologically Regularized Graph Generative Network for Sparse LiDAR Point Clouds
Prashant Kumar
Kshitij Madhav Bhat
Vedang Bhupesh Shenvi Nadkarni
P. K. Kalra
90
2
0
29 Nov 2023
An Adversarial Robustness Perspective on the Topology of Neural Networks
An Adversarial Robustness Perspective on the Topology of Neural Networks
Morgane Goibert
Thomas Ricatte
Elvis Dohmatob
AAML
66
2
0
04 Nov 2022
A Fast and Robust Method for Global Topological Functional Optimization
A Fast and Robust Method for Global Topological Functional Optimization
Elchanan Solomon
Alexander Wagner
Paul Bendich
54
22
0
17 Sep 2020
A Topology Layer for Machine Learning
A Topology Layer for Machine Learning
Rickard Brüel-Gabrielsson
Bradley J. Nelson
Anjan Dwaraknath
Primoz Skraba
Leonidas Guibas
Gunnar Carlsson
AI4CE
101
134
0
29 May 2019
1