Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1901.09657
Cited By
Fake News Detection via NLP is Vulnerable to Adversarial Attacks
5 January 2019
Zhixuan Zhou
Huankang Guan
Meghana Moorthy Bhat
Justin Hsu
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fake News Detection via NLP is Vulnerable to Adversarial Attacks"
8 / 8 papers shown
Title
Adversarial Style Augmentation via Large Language Model for Robust Fake News Detection
Sungwon Park
Sungwon Han
Xing Xie
Jae-Gil Lee
Meeyoung Cha
63
1
0
17 Jun 2024
Single Word Change is All You Need: Designing Attacks and Defenses for Text Classifiers
Lei Xu
Sarah Alnegheimish
Laure Berti-Equille
Alfredo Cuesta-Infante
K. Veeramachaneni
AAML
32
0
0
30 Jan 2024
AI Ethics Issues in Real World: Evidence from AI Incident Database
Mengyi Wei
Zhixuan Zhou
21
40
0
15 Jun 2022
Automatic Detection of Entity-Manipulated Text using Factual Knowledge
Ganesh Jawahar
Muhammad Abdul-Mageed
L. Lakshmanan
DeLMO
31
10
0
19 Mar 2022
Adversarial Attacks and Defenses for Social Network Text Processing Applications: Techniques, Challenges and Future Research Directions
I. Alsmadi
Kashif Ahmad
Mahmoud Nazzal
Firoj Alam
Ala I. Al-Fuqaha
Abdallah Khreishah
A. Algosaibi
AAML
37
16
0
26 Oct 2021
Adversarial attacks against Bayesian forecasting dynamic models
Roi Naveiro
AAML
16
4
0
20 Oct 2021
TURINGBENCH: A Benchmark Environment for Turing Test in the Age of Neural Text Generation
Adaku Uchendu
Zeyu Ma
Thai Le
Rui Zhang
Dongwon Lee
DeLMO
56
125
0
27 Sep 2021
MALCOM: Generating Malicious Comments to Attack Neural Fake News Detection Models
Thai Le
Suhang Wang
Dongwon Lee
55
59
0
01 Sep 2020
1