ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10159
14
314

An Investigation into Neural Net Optimization via Hessian Eigenvalue Density

29 January 2019
Behrooz Ghorbani
Shankar Krishnan
Ying Xiao
    ODL
ArXivPDFHTML
Abstract

To understand the dynamics of optimization in deep neural networks, we develop a tool to study the evolution of the entire Hessian spectrum throughout the optimization process. Using this, we study a number of hypotheses concerning smoothness, curvature, and sharpness in the deep learning literature. We then thoroughly analyze a crucial structural feature of the spectra: in non-batch normalized networks, we observe the rapid appearance of large isolated eigenvalues in the spectrum, along with a surprising concentration of the gradient in the corresponding eigenspaces. In batch normalized networks, these two effects are almost absent. We characterize these effects, and explain how they affect optimization speed through both theory and experiments. As part of this work, we adapt advanced tools from numerical linear algebra that allow scalable and accurate estimation of the entire Hessian spectrum of ImageNet-scale neural networks; this technique may be of independent interest in other applications.

View on arXiv
Comments on this paper