ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10524
  4. Cited By
On the Transferability of Spectral Graph Filters

On the Transferability of Spectral Graph Filters

29 January 2019
Ron Levie
Elvin Isufi
Gitta Kutyniok
ArXivPDFHTML

Papers citing "On the Transferability of Spectral Graph Filters"

9 / 9 papers shown
Title
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
A Review of Graph-Powered Data Quality Applications for IoT Monitoring Sensor Networks
Pau Ferrer-Cid
Jose M. Barcelo-Ordinas
J. García-Vidal
37
2
0
28 Oct 2024
Simplified PCNet with Robustness
Simplified PCNet with Robustness
Bingheng Li
Xuanting Xie
Haoxiang Lei
Ruiyi Fang
Zhao Kang
19
4
0
06 Mar 2024
Stable and Transferable Hyper-Graph Neural Networks
Stable and Transferable Hyper-Graph Neural Networks
Mikhail Hayhoe
Hans Riess
V. Preciado
Alejandro Ribeiro
38
1
0
11 Nov 2022
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
  Networks
EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks
Runlin Lei
Zhen Wang
Yaliang Li
Bolin Ding
Zhewei Wei
AAML
14
38
0
27 May 2022
Transferability Properties of Graph Neural Networks
Transferability Properties of Graph Neural Networks
Luana Ruiz
Luiz F. O. Chamon
Alejandro Ribeiro
GNN
19
40
0
09 Dec 2021
Transferability of Spectral Graph Convolutional Neural Networks
Transferability of Spectral Graph Convolutional Neural Networks
Ron Levie
Wei Huang
Lorenzo Bucci
M. Bronstein
Gitta Kutyniok
GNN
22
124
0
30 Jul 2019
Convolutional Neural Network Architectures for Signals Supported on
  Graphs
Convolutional Neural Network Architectures for Signals Supported on Graphs
Fernando Gama
A. Marques
G. Leus
Alejandro Ribeiro
120
284
0
01 May 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
234
1,801
0
25 Nov 2016
Geometric deep learning: going beyond Euclidean data
Geometric deep learning: going beyond Euclidean data
M. Bronstein
Joan Bruna
Yann LeCun
Arthur Szlam
P. Vandergheynst
GNN
231
3,202
0
24 Nov 2016
1