ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10548
11
122

Latent Normalizing Flows for Discrete Sequences

29 January 2019
Zachary M. Ziegler
Alexander M. Rush
    BDL
    DRL
ArXivPDFHTML
Abstract

Normalizing flows are a powerful class of generative models for continuous random variables, showing both strong model flexibility and the potential for non-autoregressive generation. These benefits are also desired when modeling discrete random variables such as text, but directly applying normalizing flows to discrete sequences poses significant additional challenges. We propose a VAE-based generative model which jointly learns a normalizing flow-based distribution in the latent space and a stochastic mapping to an observed discrete space. In this setting, we find that it is crucial for the flow-based distribution to be highly multimodal. To capture this property, we propose several normalizing flow architectures to maximize model flexibility. Experiments consider common discrete sequence tasks of character-level language modeling and polyphonic music generation. Our results indicate that an autoregressive flow-based model can match the performance of a comparable autoregressive baseline, and a non-autoregressive flow-based model can improve generation speed with a penalty to performance.

View on arXiv
Comments on this paper