ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1901.10553
  4. Cited By
Quantifying Legibility of Indoor Spaces Using Deep Convolutional Neural
  Networks: Case Studies in Train Stations

Quantifying Legibility of Indoor Spaces Using Deep Convolutional Neural Networks: Case Studies in Train Stations

22 January 2019
Zhoutong Wang
Q. Liang
Fábio Duarte
Fan Zhang
Louis Charron
L. Johnsen
B. Cai
C. Ratti
    3DVHAI
ArXiv (abs)PDFHTML

Papers citing "Quantifying Legibility of Indoor Spaces Using Deep Convolutional Neural Networks: Case Studies in Train Stations"

2 / 2 papers shown
Paved or unpaved? A Deep Learning derived Road Surface Global Dataset
  from Mapillary Street-View Imagery
Paved or unpaved? A Deep Learning derived Road Surface Global Dataset from Mapillary Street-View ImageryIsprs Journal of Photogrammetry and Remote Sensing (ISPRS J. Photogramm. Remote Sens.), 2024
Sukanya Randhawa
Eren Aygun
Guntaj Randhawa
Benjamin Herfort
Sven Lautenbach
Alexander Zipf
244
12
0
24 Oct 2024
Urban Visual Intelligence: Studying Cities with AI and Street-level
  Imagery
Urban Visual Intelligence: Studying Cities with AI and Street-level Imagery
Zhanga Fan
Arianna Salazar Miranda
Fábio Duarte
Lawrence J. Vale
G. Hack
Min Chen
Yu Liu
M. Batty
C. Ratti
283
7
0
02 Jan 2023
1