ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.00465
  4. Cited By
TF-Replicator: Distributed Machine Learning for Researchers

TF-Replicator: Distributed Machine Learning for Researchers

1 February 2019
P. Buchlovsky
David Budden
Dominik Grewe
Chris Jones
John Aslanides
F. Besse
Andy Brock
Aidan Clark
Sergio Gomez Colmenarejo
Aedan Pope
Fabio Viola
Dan Belov
    GNN
    OffRL
    AI4CE
ArXivPDFHTML

Papers citing "TF-Replicator: Distributed Machine Learning for Researchers"

10 / 10 papers shown
Title
The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs
  with Hybrid Parallelism
The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism
Yosuke Oyama
N. Maruyama
Nikoli Dryden
Erin McCarthy
P. Harrington
J. Balewski
Satoshi Matsuoka
Peter Nugent
B. Van Essen
3DV
AI4CE
32
37
0
25 Jul 2020
Data Movement Is All You Need: A Case Study on Optimizing Transformers
Data Movement Is All You Need: A Case Study on Optimizing Transformers
A. Ivanov
Nikoli Dryden
Tal Ben-Nun
Shigang Li
Torsten Hoefler
33
131
0
30 Jun 2020
Two Routes to Scalable Credit Assignment without Weight Symmetry
Two Routes to Scalable Credit Assignment without Weight Symmetry
D. Kunin
Aran Nayebi
Javier Sagastuy-Breña
Surya Ganguli
Jonathan M. Bloom
Daniel L. K. Yamins
18
31
0
28 Feb 2020
V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete
  and Continuous Control
V-MPO: On-Policy Maximum a Posteriori Policy Optimization for Discrete and Continuous Control
H. F. Song
A. Abdolmaleki
Jost Tobias Springenberg
Aidan Clark
Hubert Soyer
...
Dhruva Tirumala
N. Heess
Dan Belov
Martin Riedmiller
M. Botvinick
29
121
0
26 Sep 2019
Large Scale Adversarial Representation Learning
Large Scale Adversarial Representation Learning
Jeff Donahue
Karen Simonyan
SSL
54
542
0
04 Jul 2019
Compositional Transfer in Hierarchical Reinforcement Learning
Compositional Transfer in Hierarchical Reinforcement Learning
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
14
27
0
26 Jun 2019
Object Discovery with a Copy-Pasting GAN
Object Discovery with a Copy-Pasting GAN
Relja Arandjelović
Andrew Zisserman
19
57
0
27 May 2019
Deep Learning without Weight Transport
Deep Learning without Weight Transport
Mohamed Akrout
Collin Wilson
Peter C. Humphreys
Timothy Lillicrap
D. Tweed
CVBM
18
131
0
10 Apr 2019
A Learned Representation For Artistic Style
A Learned Representation For Artistic Style
Vincent Dumoulin
Jonathon Shlens
M. Kudlur
GAN
214
1,156
0
24 Oct 2016
Pixel Recurrent Neural Networks
Pixel Recurrent Neural Networks
Aaron van den Oord
Nal Kalchbrenner
Koray Kavukcuoglu
SSeg
GAN
242
2,550
0
25 Jan 2016
1