Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1902.00681
Cited By
v1
v2
v3 (latest)
First-Order Bayesian Regret Analysis of Thompson Sampling
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2019
2 February 2019
Sébastien Bubeck
Mark Sellke
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"First-Order Bayesian Regret Analysis of Thompson Sampling"
17 / 17 papers shown
Title
Sparse Optimistic Information Directed Sampling
Ludovic Schwartz
Hamish Flynn
Gergely Neu
44
0
0
28 Oct 2025
Geometry Meets Incentives: Sample-Efficient Incentivized Exploration with Linear Contexts
Benjamin Schiffer
Mark Sellke
171
0
0
02 Jun 2025
Policy Gradient with Active Importance Sampling
Matteo Papini
Giorgio Manganini
Alberto Maria Metelli
Marcello Restelli
OffRL
155
4
0
09 May 2024
Optimistic Information Directed Sampling
Gergely Neu
Matteo Papini
Ludovic Schwartz
249
3
0
23 Feb 2024
Improved Bayesian Regret Bounds for Thompson Sampling in Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2023
Ahmadreza Moradipari
M. Pedramfar
Modjtaba Shokrian Zini
Vaneet Aggarwal
261
6
0
30 Oct 2023
Incentivizing Exploration with Linear Contexts and Combinatorial Actions
International Conference on Machine Learning (ICML), 2023
Mark Sellke
219
4
0
03 Jun 2023
The Benefits of Being Distributional: Small-Loss Bounds for Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2023
Kaiwen Wang
Kevin Zhou
Runzhe Wu
Nathan Kallus
Wen Sun
OffRL
410
23
0
25 May 2023
Regret Bounds for Information-Directed Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2022
Botao Hao
Tor Lattimore
OffRL
234
23
0
09 Jun 2022
Deciding What to Model: Value-Equivalent Sampling for Reinforcement Learning
Neural Information Processing Systems (NeurIPS), 2022
Dilip Arumugam
Benjamin Van Roy
OffRL
226
18
0
04 Jun 2022
Lifting the Information Ratio: An Information-Theoretic Analysis of Thompson Sampling for Contextual Bandits
Neural Information Processing Systems (NeurIPS), 2022
Gergely Neu
Julia Olkhovskaya
Matteo Papini
Ludovic Schwartz
272
20
0
27 May 2022
Gaussian Imagination in Bandit Learning
Yueyang Liu
Adithya M. Devraj
Benjamin Van Roy
Kuang Xu
184
7
0
06 Jan 2022
First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach
International Conference on Machine Learning (ICML), 2021
Andrew Wagenmaker
Yifang Chen
Max Simchowitz
S. Du
Kevin Jamieson
271
47
0
07 Dec 2021
The Value of Information When Deciding What to Learn
Dilip Arumugam
Benjamin Van Roy
138
16
0
26 Oct 2021
Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination
Dylan J. Foster
A. Krishnamurthy
167
52
0
05 Jul 2021
Information Directed Sampling for Sparse Linear Bandits
Neural Information Processing Systems (NeurIPS), 2021
Botao Hao
Tor Lattimore
Wei Deng
192
21
0
29 May 2021
Reinforcement Learning, Bit by Bit
Xiuyuan Lu
Benjamin Van Roy
Vikranth Dwaracherla
M. Ibrahimi
Ian Osband
Zheng Wen
422
76
0
06 Mar 2021
Mirror Descent and the Information Ratio
Annual Conference Computational Learning Theory (COLT), 2020
Tor Lattimore
András Gyorgy
210
44
0
25 Sep 2020
1