ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02588
  4. Cited By
Self-Adjusting Mutation Rates with Provably Optimal Success Rules
v1v2v3v4 (latest)

Self-Adjusting Mutation Rates with Provably Optimal Success Rules

7 February 2019
Benjamin Doerr
Carola Doerr
Johannes Lengler
ArXiv (abs)PDFHTML

Papers citing "Self-Adjusting Mutation Rates with Provably Optimal Success Rules"

10 / 10 papers shown
Title
EvoPress: Accurate Dynamic Model Compression via Evolutionary Search
EvoPress: Accurate Dynamic Model Compression via Evolutionary Search
Oliver Sieberling
Denis Kuznedelev
Eldar Kurtic
Dan Alistarh
MQ
71
5
0
18 Oct 2024
OneMax is not the Easiest Function for Fitness Improvements
OneMax is not the Easiest Function for Fitness Improvements
Marc Kaufmann
Maxime Larcher
Johannes Lengler
Xun Zou
LRM
93
6
0
14 Apr 2022
Hard Problems are Easier for Success-based Parameter Control
Hard Problems are Easier for Success-based Parameter Control
Mario Alejandro Hevia Fajardo
Dirk Sudholt
53
6
0
12 Apr 2022
Effective Mutation Rate Adaptation through Group Elite Selection
Effective Mutation Rate Adaptation through Group Elite Selection
Akarsh Kumar
B. Liu
Risto Miikkulainen
Peter Stone
28
10
0
11 Apr 2022
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm
  Configuration
Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration
André Biedenkapp
Nguyen Dang
Martin S. Krejca
Frank Hutter
Carola Doerr
74
8
0
07 Feb 2022
Stagnation Detection with Randomized Local Search
Stagnation Detection with Randomized Local Search
A. Rajabi
Carsten Witt
89
30
0
28 Jan 2021
Benchmarking in Optimization: Best Practice and Open Issues
Benchmarking in Optimization: Best Practice and Open Issues
Thomas Bartz-Beielstein
Carola Doerr
Daan van den Berg
Jakob Bossek
Sowmya Chandrasekaran
...
B. Naujoks
Patryk Orzechowski
Vanessa Volz
Markus Wagner
T. Weise
138
112
0
07 Jul 2020
A Survey on Recent Progress in the Theory of Evolutionary Algorithms for
  Discrete Optimization
A Survey on Recent Progress in the Theory of Evolutionary Algorithms for Discrete Optimization
Benjamin Doerr
Frank Neumann
67
34
0
30 Jun 2020
Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the
  Mutation Rate of an Evolutionary Algorithm
Hybridizing the 1/5-th Success Rule with Q-Learning for Controlling the Mutation Rate of an Evolutionary Algorithm
Arina Buzdalova
Carola Doerr
A. Rodionova
25
3
0
19 Jun 2020
Self-adaptation in non-Elitist Evolutionary Algorithms on Discrete
  Problems with Unknown Structure
Self-adaptation in non-Elitist Evolutionary Algorithms on Discrete Problems with Unknown Structure
B. Case
Per Kristian Lehre
35
31
0
01 Apr 2020
1