ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.02923
8
15

A Single-shot Object Detector with Feature Aggragation and Enhancement

8 February 2019
Weiqiang Li
Guizhong Liu
    ObjD
ArXivPDFHTML
Abstract

For many real applications, it is equally important to detect objects accurately and quickly. In this paper, we propose an accurate and efficient single shot object detector with feature aggregation and enhancement (FAENet). Our motivation is to enhance and exploit the shallow and deep feature maps of the whole network simultaneously. To achieve it we introduce a pair of novel feature aggregation modules and two feature enhancement blocks, and integrate them into the original structure of SSD. Extensive experiments on both the PASCAL VOC and MS COCO datasets demonstrate that the proposed method achieves much higher accuracy than SSD. In addition, our method performs better than the state-of-the-art one-stage detector RefineDet on small objects and can run at a faster speed.

View on arXiv
Comments on this paper