Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1902.03046
Cited By
v1
v2
v3 (latest)
Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance
8 February 2019
Ulysse Marteau-Ferey
Dmitrii Ostrovskii
Francis R. Bach
Alessandro Rudi
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Beyond Least-Squares: Fast Rates for Regularized Empirical Risk Minimization through Self-Concordance"
38 / 38 papers shown
Computational Efficiency under Covariate Shift in Kernel Ridge Regression
Andrea Della Vecchia
Arnaud Mavakala Watusadisi
Ernesto De Vito
Lorenzo Rosasco
198
0
0
20 May 2025
Efficient and Robust Regularized Federated Recommendation
International Conference on Information and Knowledge Management (CIKM), 2024
Langming Liu
Wanyu Wang
Xiangyu Zhao
Zijian Zhang
Chunxu Zhang
...
Lixin Zou
Zitao Liu
Xuetao Wei
Hongzhi Yin
Qing Li
FedML
299
6
0
03 Nov 2024
Almost Free: Self-concordance in Natural Exponential Families and an Application to Bandits
Neural Information Processing Systems (NeurIPS), 2024
Shuai Liu
Alex Ayoub
Flore Sentenac
Xiaoqi Tan
Csaba Szepesvári
289
3
0
01 Oct 2024
Asymptotic Theory for Linear Functionals of Kernel Ridge Regression
Rui Tuo
Lu Zou
213
2
0
07 Mar 2024
Overcoming Saturation in Density Ratio Estimation by Iterated Regularization
Lukas Gruber
Markus Holzleitner
Johannes Lehner
Sepp Hochreiter
Werner Zellinger
312
5
0
21 Feb 2024
An Online Multiple Kernel Parallelizable Learning Scheme
IEEE Signal Processing Letters (IEEE SPL), 2023
Emilio Ruiz-Moreno
B. Beferull-Lozano
144
0
0
19 Aug 2023
Adaptive learning of density ratios in RKHS
Journal of machine learning research (JMLR), 2023
Werner Zellinger
S. Kindermann
S. Pereverzyev
214
7
0
30 Jul 2023
Doubly Stochastic Models: Learning with Unbiased Label Noises and Inference Stability
Haoyi Xiong
Xuhong Li
Bo Yu
Zhanxing Zhu
Dongrui Wu
Dejing Dou
NoLa
146
0
0
01 Apr 2023
Fast kernel methods for Data Quality Monitoring as a goodness-of-fit test
Gaia Grosso
Nicolò Lai
Marco Letizia
J. Pazzini
Marco Rando
Lorenzo Rosasco
A. Wulzer
M. Zanetti
159
9
0
09 Mar 2023
Confidence Sets under Generalized Self-Concordance
Lang Liu
Zaïd Harchaoui
182
1
0
31 Dec 2022
Learning in RKHM: a
C
∗
C^*
C
∗
-Algebraic Twist for Kernel Machines
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Yuka Hashimoto
Masahiro Ikeda
Hachem Kadri
256
8
0
21 Oct 2022
Dual Instrumental Method for Confounded Kernelized Bandits
Xueping Gong
Jiheng Zhang
180
1
0
07 Sep 2022
A Case of Exponential Convergence Rates for SVM
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Vivien A. Cabannes
Stefano Vigogna
228
2
0
20 May 2022
Sobolev Acceleration and Statistical Optimality for Learning Elliptic Equations via Gradient Descent
Neural Information Processing Systems (NeurIPS), 2022
Yiping Lu
Jose H. Blanchet
Lexing Ying
368
10
0
15 May 2022
Learning new physics efficiently with nonparametric methods
Marco Letizia
Gianvito Losapio
Marco Rando
Gaia Grosso
A. Wulzer
M. Pierini
M. Zanetti
Lorenzo Rosasco
OOD
214
39
0
05 Apr 2022
Error Scaling Laws for Kernel Classification under Source and Capacity Conditions
Hugo Cui
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
305
15
0
29 Jan 2022
SCORE: Approximating Curvature Information under Self-Concordant Regularization
Adeyemi Damilare Adeoye
Alberto Bemporad
168
4
0
14 Dec 2021
Kernel-based estimation for partially functional linear model: Minimax rates and randomized sketches
Shaogao Lv
Xin He
Junhui Wang
141
1
0
18 Oct 2021
Mixability made efficient: Fast online multiclass logistic regression
Neural Information Processing Systems (NeurIPS), 2021
Rémi Jézéquel
Pierre Gaillard
Alessandro Rudi
159
12
0
08 Oct 2021
Efficient Methods for Online Multiclass Logistic Regression
Naman Agarwal
Satyen Kale
Julian Zimmert
179
12
0
06 Oct 2021
Beyond Tikhonov: Faster Learning with Self-Concordant Losses via Iterative Regularization
Gaspard Beugnot
Julien Mairal
Alessandro Rudi
132
1
0
16 Jun 2021
Scalable Frank-Wolfe on Generalized Self-concordant Functions via Simple Steps
SIAM Journal on Optimization (SIAM J. Optim.), 2021
Alejandro Carderera
Mathieu Besançon
Sebastian Pokutta
447
8
0
28 May 2021
Localization, Convexity, and Star Aggregation
Neural Information Processing Systems (NeurIPS), 2021
Suhas Vijaykumar
179
10
0
19 May 2021
A Sieve Stochastic Gradient Descent Estimator for Online Nonparametric Regression in Sobolev ellipsoids
Annals of Statistics (Ann. Stat.), 2021
Tianyu Zhang
N. Simon
278
6
0
02 Apr 2021
Fast rates in structured prediction
Annual Conference Computational Learning Theory (COLT), 2021
Vivien A. Cabannes
Alessandro Rudi
Francis R. Bach
556
19
0
01 Feb 2021
Near-Optimal Procedures for Model Discrimination with Non-Disclosure Properties
Dmitrii Ostrovskii
M. Ndaoud
Adel Javanmard
Meisam Razaviyayn
FedML
364
0
0
04 Dec 2020
Towards Optimal Problem Dependent Generalization Error Bounds in Statistical Learning Theory
Mathematics of Operations Research (MOR), 2020
Yunbei Xu
A. Zeevi
453
21
0
12 Nov 2020
Kernel methods through the roof: handling billions of points efficiently
Giacomo Meanti
Luigi Carratino
Lorenzo Rosasco
Alessandro Rudi
321
125
0
18 Jun 2020
Kernel Alignment Risk Estimator: Risk Prediction from Training Data
Arthur Jacot
Berfin cSimcsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
180
70
0
17 Jun 2020
On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators
Journal of machine learning research (JMLR), 2020
Zejian Liu
Meng Li
288
9
0
02 Jun 2020
Efficient improper learning for online logistic regression
Annual Conference Computational Learning Theory (COLT), 2020
Rémi Jézéquel
Pierre Gaillard
Alessandro Rudi
231
24
0
18 Mar 2020
A Spectral Analysis of Dot-product Kernels
M. Scetbon
Zaïd Harchaoui
873
2
0
28 Feb 2020
Implicit Regularization of Random Feature Models
International Conference on Machine Learning (ICML), 2020
Arthur Jacot
Berfin Simsek
Francesco Spadaro
Clément Hongler
Franck Gabriel
274
84
0
19 Feb 2020
Self-Concordant Analysis of Frank-Wolfe Algorithms
International Conference on Machine Learning (ICML), 2020
Pavel Dvurechensky
P. Ostroukhov
K. Safin
Shimrit Shtern
Mathias Staudigl
324
25
0
11 Feb 2020
An improper estimator with optimal excess risk in misspecified density estimation and logistic regression
Journal of machine learning research (JMLR), 2019
Jaouad Mourtada
Stéphane Gaïffas
278
32
0
23 Dec 2019
Fast and Furious Convergence: Stochastic Second Order Methods under Interpolation
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
S. Meng
Sharan Vaswani
I. Laradji
Mark Schmidt
Damien Scieur
258
37
0
11 Oct 2019
Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses
Ulysse Marteau-Ferey
Francis R. Bach
Alessandro Rudi
203
39
0
03 Jul 2019
Finite-sample analysis of M-estimators using self-concordance
Dmitrii Ostrovskii
Francis R. Bach
188
57
0
16 Oct 2018
1