ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.03377
19
2

Region based Ensemble Learning Network for Fine-grained Classification

9 February 2019
Weikuang Li
Tian Wang
Chuanyun Wang
Guangcun Shan
Mengyi Zhang
H. Snoussi
    ObjD
ArXiv (abs)PDFHTML
Abstract

As an important research topic in computer vision, fine-grained classification which aims to recognition subordinate-level categories has attracted significant attention. We propose a novel region based ensemble learning network for fine-grained classification. Our approach contains a detection module and a module for classification. The detection module is based on the faster R-CNN framework to locate the semantic regions of the object. The classification module using an ensemble learning method, which trains a set of sub-classifiers for different semantic regions and combines them together to get a stronger classifier. In the evaluation, we implement experiments on the CUB-2011 dataset and the result of experiments proves our method s efficient for fine-grained classification. We also extend our approach to remote scene recognition and evaluate it on the NWPU-RESISC45 dataset.

View on arXiv
Comments on this paper