450
v1v2 (latest)

Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning

International Conference on Learning Representations (ICLR), 2019
Abstract

The posteriors over neural network weights are high dimensional and multimodal. Each mode typically characterizes a meaningfully different representation of the data. We develop Cyclical Stochastic Gradient MCMC (SG-MCMC) to automatically explore such distributions. In particular, we propose a cyclical stepsize schedule, where larger steps discover new modes, and smaller steps characterize each mode. We also prove non-asymptotic convergence of our proposed algorithm. Moreover, we provide extensive experimental results, including ImageNet, to demonstrate the scalability and effectiveness of cyclical SG-MCMC in learning complex multimodal distributions, especially for fully Bayesian inference with modern deep neural networks.

View on arXiv
Comments on this paper