Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.04217
Cited By
v1
v2 (latest)
VC Classes are Adversarially Robustly Learnable, but Only Improperly
12 February 2019
Omar Montasser
Steve Hanneke
Nathan Srebro
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"VC Classes are Adversarially Robustly Learnable, but Only Improperly"
50 / 103 papers shown
Title
Fast Rates for Nonparametric Online Learning: From Realizability to Learning in Games
C. Daskalakis
Noah Golowich
55
24
0
17 Nov 2021
Realizable Learning is All You Need
Max Hopkins
D. Kane
Shachar Lovett
G. Mahajan
173
23
0
08 Nov 2021
Adversarial Robustness with Semi-Infinite Constrained Learning
Alexander Robey
Luiz F. O. Chamon
George J. Pappas
Hamed Hassani
Alejandro Ribeiro
AAML
OOD
173
46
0
29 Oct 2021
Transductive Robust Learning Guarantees
Omar Montasser
Steve Hanneke
Nathan Srebro
63
13
0
20 Oct 2021
Excess Capacity and Backdoor Poisoning
N. Manoj
Avrim Blum
SILM
AAML
83
24
0
02 Sep 2021
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
131
8
0
02 Sep 2021
On the (Un-)Avoidability of Adversarial Examples
Sadia Chowdhury
Ruth Urner
AAML
57
1
0
24 Jun 2021
Learning and Certification under Instance-targeted Poisoning
Ji Gao
Amin Karbasi
Mohammad Mahmoody
AAML
58
15
0
18 May 2021
Calibration and Consistency of Adversarial Surrogate Losses
Pranjal Awasthi
Natalie Frank
Anqi Mao
M. Mohri
Yutao Zhong
AAML
66
48
0
19 Apr 2021
Robust Learning Meets Generative Models: Can Proxy Distributions Improve Adversarial Robustness?
Vikash Sehwag
Saeed Mahloujifar
Tinashe Handina
Sihui Dai
Chong Xiang
M. Chiang
Prateek Mittal
OOD
100
131
0
19 Apr 2021
Lower Bounds on Cross-Entropy Loss in the Presence of Test-time Adversaries
A. Bhagoji
Daniel Cullina
Vikash Sehwag
Prateek Mittal
AAML
OOD
73
3
0
16 Apr 2021
Domain Invariant Adversarial Learning
Matan Levi
Idan Attias
A. Kontorovich
AAML
OOD
122
11
0
01 Apr 2021
Understanding Generalization in Adversarial Training via the Bias-Variance Decomposition
Yaodong Yu
Zitong Yang
Yan Sun
Jacob Steinhardt
Yi-An Ma
56
17
0
17 Mar 2021
Robust learning under clean-label attack
Avrim Blum
Steve Hanneke
Jian Qian
Han Shao
OOD
76
9
0
01 Mar 2021
A PAC-Bayes Analysis of Adversarial Robustness
Paul Viallard
Guillaume Vidot
Amaury Habrard
Emilie Morvant
AAML
70
15
0
19 Feb 2021
Adversarially Robust Learning with Unknown Perturbation Sets
Omar Montasser
Steve Hanneke
Nathan Srebro
AAML
85
28
0
03 Feb 2021
Online Learning with Simple Predictors and a Combinatorial Characterization of Minimax in 0/1 Games
Steve Hanneke
Roi Livni
Shay Moran
67
15
0
02 Feb 2021
Recent advances in deep learning theory
Fengxiang He
Dacheng Tao
AI4CE
130
51
0
20 Dec 2020
Sample Complexity of Adversarially Robust Linear Classification on Separated Data
Robi Bhattacharjee
S. Jha
Kamalika Chaudhuri
63
6
0
19 Dec 2020
Robust and Private Learning of Halfspaces
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thao Nguyen
83
12
0
30 Nov 2020
Reducing Adversarially Robust Learning to Non-Robust PAC Learning
Omar Montasser
Steve Hanneke
Nathan Srebro
94
33
0
22 Oct 2020
Query complexity of adversarial attacks
Grzegorz Gluch
R. Urbanke
AAML
56
5
0
02 Oct 2020
The Complexity of Adversarially Robust Proper Learning of Halfspaces with Agnostic Noise
Ilias Diakonikolas
D. Kane
Pasin Manurangsi
72
21
0
30 Jul 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
86
58
0
08 Jul 2020
A Le Cam Type Bound for Adversarial Learning and Applications
Qiuling Xu
Kevin Bello
Jean Honorio
AAML
55
1
0
01 Jul 2020
Black-box Certification and Learning under Adversarial Perturbations
H. Ashtiani
Vinayak Pathak
Ruth Urner
AAML
64
20
0
30 Jun 2020
Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
Chen Dan
Yuting Wei
Pradeep Ravikumar
68
45
0
29 Jun 2020
Provable tradeoffs in adversarially robust classification
Yan Sun
Hamed Hassani
David Hong
Alexander Robey
107
56
0
09 Jun 2020
Unique properties of adversarially trained linear classifiers on Gaussian data
Jamie Hayes
AAML
75
0
0
06 Jun 2020
Proper Learning, Helly Number, and an Optimal SVM Bound
Olivier Bousquet
Steve Hanneke
Shay Moran
Nikita Zhivotovskiy
123
53
0
24 May 2020
Efficiently Learning Adversarially Robust Halfspaces with Noise
Omar Montasser
Surbhi Goel
Ilias Diakonikolas
Nathan Srebro
89
33
0
15 May 2020
Depth-2 Neural Networks Under a Data-Poisoning Attack
Sayar Karmakar
Anirbit Mukherjee
Ramchandran Muthukumar
38
7
0
04 May 2020
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Pranjal Awasthi
Natalie Frank
M. Mohri
AAML
90
58
0
28 Apr 2020
Adversarial Weight Perturbation Helps Robust Generalization
Dongxian Wu
Shutao Xia
Yisen Wang
OOD
AAML
60
17
0
13 Apr 2020
Towards Deep Learning Models Resistant to Large Perturbations
Amirreza Shaeiri
Rozhin Nobahari
M. Rohban
OOD
AAML
81
12
0
30 Mar 2020
When are Non-Parametric Methods Robust?
Robi Bhattacharjee
Kamalika Chaudhuri
AAML
89
27
0
13 Mar 2020
The Curious Case of Adversarially Robust Models: More Data Can Help, Double Descend, or Hurt Generalization
Yifei Min
Lin Chen
Amin Karbasi
AAML
103
69
0
25 Feb 2020
Precise Tradeoffs in Adversarial Training for Linear Regression
Adel Javanmard
Mahdi Soltanolkotabi
Hamed Hassani
AAML
66
109
0
24 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
82
64
0
11 Feb 2020
Adversarially Robust Low Dimensional Representations
Pranjal Awasthi
Vaggos Chatziafratis
Xue Chen
Aravindan Vijayaraghavan
AAML
OOD
101
12
0
29 Nov 2019
Improved Sample Complexities for Deep Networks and Robust Classification via an All-Layer Margin
Colin Wei
Tengyu Ma
AAML
OOD
72
85
0
09 Oct 2019
Lower Bounds on Adversarial Robustness from Optimal Transport
A. Bhagoji
Daniel Cullina
Prateek Mittal
OOD
OT
AAML
70
94
0
26 Sep 2019
On the Hardness of Robust Classification
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
66
44
0
12 Sep 2019
Nearly Tight Bounds for Robust Proper Learning of Halfspaces with a Margin
Ilias Diakonikolas
D. Kane
Pasin Manurangsi
71
20
0
29 Aug 2019
The Adversarial Robustness of Sampling
Omri Ben-Eliezer
E. Yogev
TTA
AAML
61
48
0
26 Jun 2019
Adversarial Training Can Hurt Generalization
Aditi Raghunathan
Sang Michael Xie
Fanny Yang
John C. Duchi
Percy Liang
86
244
0
14 Jun 2019
Lower Bounds for Adversarially Robust PAC Learning
Dimitrios I. Diochnos
Saeed Mahloujifar
Mohammad Mahmoody
AAML
80
26
0
13 Jun 2019
Adversarial Risk Bounds for Neural Networks through Sparsity based Compression
E. Balda
Arash Behboodi
Niklas Koep
R. Mathar
AAML
77
8
0
03 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
130
754
0
31 May 2019
Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness
Saeed Mahloujifar
Xiao Zhang
Mohammad Mahmoody
David Evans
57
22
0
29 May 2019
Previous
1
2
3
Next