Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1902.04818
Cited By
The Odds are Odd: A Statistical Test for Detecting Adversarial Examples
13 February 2019
Kevin Roth
Yannic Kilcher
Thomas Hofmann
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Odds are Odd: A Statistical Test for Detecting Adversarial Examples"
33 / 33 papers shown
Title
CaFA: Cost-aware, Feasible Attacks With Database Constraints Against Neural Tabular Classifiers
Matan Ben-Tov
Daniel Deutch
Nave Frost
Mahmood Sharif
AAML
107
0
0
20 Jan 2025
Adversarial Detection with a Dynamically Stable System
Xiaowei Long
Jie Lin
Xiangyuan Yang
AAML
36
0
0
11 Nov 2024
Trustworthy Actionable Perturbations
Jesse Friedbaum
S. Adiga
Ravi Tandon
AAML
38
2
0
18 May 2024
A LLM Assisted Exploitation of AI-Guardian
Nicholas Carlini
ELM
SILM
24
15
0
20 Jul 2023
Graph-based methods coupled with specific distributional distances for adversarial attack detection
dwight nwaigwe
Lucrezia Carboni
Martial Mermillod
Sophie Achard
M. Dojat
AAML
24
3
0
31 May 2023
Did You Train on My Dataset? Towards Public Dataset Protection with Clean-Label Backdoor Watermarking
Ruixiang Tang
Qizhang Feng
Ninghao Liu
Fan Yang
Xia Hu
24
36
0
20 Mar 2023
Explainability and Robustness of Deep Visual Classification Models
Jindong Gu
AAML
39
2
0
03 Jan 2023
ADDMU: Detection of Far-Boundary Adversarial Examples with Data and Model Uncertainty Estimation
Fan Yin
Yao Li
Cho-Jui Hsieh
Kai-Wei Chang
AAML
60
4
0
22 Oct 2022
Boosting Adversarial Robustness From The Perspective of Effective Margin Regularization
Ziquan Liu
Antoni B. Chan
AAML
25
5
0
11 Oct 2022
DNNShield: Dynamic Randomized Model Sparsification, A Defense Against Adversarial Machine Learning
Mohammad Hossein Samavatian
Saikat Majumdar
Kristin Barber
R. Teodorescu
AAML
14
2
0
31 Jul 2022
Increasing Confidence in Adversarial Robustness Evaluations
Roland S. Zimmermann
Wieland Brendel
Florian Tramèr
Nicholas Carlini
AAML
36
16
0
28 Jun 2022
On the Limitations of Stochastic Pre-processing Defenses
Yue Gao
Ilia Shumailov
Kassem Fawaz
Nicolas Papernot
AAML
SILM
36
30
0
19 Jun 2022
Exploring Adversarial Attacks and Defenses in Vision Transformers trained with DINO
Javier Rando
Nasib Naimi
Thomas Baumann
Max Mathys
AAML
18
5
0
14 Jun 2022
Special Session: Towards an Agile Design Methodology for Efficient, Reliable, and Secure ML Systems
Shail Dave
Alberto Marchisio
Muhammad Abdullah Hanif
Amira Guesmi
Aviral Shrivastava
Ihsen Alouani
Muhammad Shafique
28
13
0
18 Apr 2022
"That Is a Suspicious Reaction!": Interpreting Logits Variation to Detect NLP Adversarial Attacks
Edoardo Mosca
Shreyash Agarwal
Javier Rando
Georg Groh
AAML
25
30
0
10 Apr 2022
Interpolated Joint Space Adversarial Training for Robust and Generalizable Defenses
Chun Pong Lau
Jiang-Long Liu
Hossein Souri
Wei-An Lin
S. Feizi
Ramalingam Chellappa
AAML
29
12
0
12 Dec 2021
Adaptive Perturbation for Adversarial Attack
Zheng Yuan
Jie M. Zhang
Zhaoyan Jiang
Liangliang Li
Shiguang Shan
AAML
21
3
0
27 Nov 2021
SoK: Machine Learning Governance
Varun Chandrasekaran
Hengrui Jia
Anvith Thudi
Adelin Travers
Mohammad Yaghini
Nicolas Papernot
32
16
0
20 Sep 2021
Simple Post-Training Robustness Using Test Time Augmentations and Random Forest
Gilad Cohen
Raja Giryes
AAML
29
4
0
16 Sep 2021
Advances in adversarial attacks and defenses in computer vision: A survey
Naveed Akhtar
Ajmal Saeed Mian
Navid Kardan
M. Shah
AAML
26
235
0
01 Aug 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
16
64
0
24 Jul 2021
BAARD: Blocking Adversarial Examples by Testing for Applicability, Reliability and Decidability
Luke Chang
Katharina Dost
Kaiqi Zhao
Ambra Demontis
Fabio Roli
Gillian Dobbie
Jörg Simon Wicker
AAML
19
2
0
02 May 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
29
131
0
14 Feb 2021
Dual Manifold Adversarial Robustness: Defense against Lp and non-Lp Adversarial Attacks
Wei-An Lin
Chun Pong Lau
Alexander Levine
Ramalingam Chellappa
S. Feizi
AAML
78
60
0
05 Sep 2020
Towards Feature Space Adversarial Attack
Qiuling Xu
Guanhong Tao
Shuyang Cheng
X. Zhang
GAN
AAML
25
25
0
26 Apr 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
A. Madry
AAML
80
820
0
19 Feb 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
20
15
0
18 Feb 2020
Analysis of Random Perturbations for Robust Convolutional Neural Networks
Adam Dziedzic
S. Krishnan
OOD
AAML
16
1
0
08 Feb 2020
When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures
Gil Fidel
Ron Bitton
A. Shabtai
FAtt
GAN
13
119
0
08 Sep 2019
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
17
71
0
05 Jul 2019
Defending Adversarial Attacks by Correcting logits
Yifeng Li
Lingxi Xie
Ya-Qin Zhang
Rui Zhang
Yanfeng Wang
Qi Tian
AAML
29
5
0
26 Jun 2019
DeepFense: Online Accelerated Defense Against Adversarial Deep Learning
B. Rouhani
Mohammad Samragh
Mojan Javaheripi
T. Javidi
F. Koushanfar
AAML
10
15
0
08 Sep 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
281
5,835
0
08 Jul 2016
1