ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.06918
  4. Cited By
Explaining a black-box using Deep Variational Information Bottleneck
  Approach

Explaining a black-box using Deep Variational Information Bottleneck Approach

19 February 2019
Seo-Jin Bang
P. Xie
Heewook Lee
Wei Wu
Eric Xing
    XAI
    FAtt
ArXivPDFHTML

Papers citing "Explaining a black-box using Deep Variational Information Bottleneck Approach"

19 / 19 papers shown
Title
DocVXQA: Context-Aware Visual Explanations for Document Question Answering
DocVXQA: Context-Aware Visual Explanations for Document Question Answering
Mohamed Ali Souibgui
Changkyu Choi
Andrey Barsky
Kangsoo Jung
Ernest Valveny
Dimosthenis Karatzas
28
0
0
12 May 2025
CRFU: Compressive Representation Forgetting Against Privacy Leakage on Machine Unlearning
Weiqi Wang
Chenhan Zhang
Zhiyi Tian
Shushu Liu
Shui Yu
MU
47
0
0
27 Feb 2025
Task-Augmented Cross-View Imputation Network for Partial Multi-View Incomplete Multi-Label Classification
Task-Augmented Cross-View Imputation Network for Partial Multi-View Incomplete Multi-Label Classification
Xiaohuan Lu
Lian Zhao
Wai Keung Wong
Jie Wen
Jiang Long
Wulin Xie
36
1
0
12 Sep 2024
ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for
  Traffic Speed Prediction
ICST-DNET: An Interpretable Causal Spatio-Temporal Diffusion Network for Traffic Speed Prediction
Yi Rong
Yingchi Mao
Yinqiu Liu
Ling Chen
Xiaoming He
Dusit Niyato
DiffM
23
1
0
22 Apr 2024
BELLA: Black box model Explanations by Local Linear Approximations
BELLA: Black box model Explanations by Local Linear Approximations
N. Radulovic
Albert Bifet
Fabian M. Suchanek
FAtt
37
1
0
18 May 2023
Posthoc Interpretation via Quantization
Posthoc Interpretation via Quantization
Francesco Paissan
Cem Subakan
Mirco Ravanelli
MQ
24
6
0
22 Mar 2023
Interpretability with full complexity by constraining feature
  information
Interpretability with full complexity by constraining feature information
Kieran A. Murphy
Danielle Bassett
FAtt
35
5
0
30 Nov 2022
Revisiting Attention Weights as Explanations from an Information
  Theoretic Perspective
Revisiting Attention Weights as Explanations from an Information Theoretic Perspective
Bingyang Wen
K. P. Subbalakshmi
Fan Yang
FAtt
27
6
0
31 Oct 2022
Explanation-based Counterfactual Retraining(XCR): A Calibration Method
  for Black-box Models
Explanation-based Counterfactual Retraining(XCR): A Calibration Method for Black-box Models
Liu Zhendong
Wenyu Jiang
Yan Zhang
Chongjun Wang
CML
11
0
0
22 Jun 2022
Variational Distillation for Multi-View Learning
Variational Distillation for Multi-View Learning
Xudong Tian
Zhizhong Zhang
Cong Wang
Wensheng Zhang
Yanyun Qu
Lizhuang Ma
Zongze Wu
Yuan Xie
Dacheng Tao
26
5
0
20 Jun 2022
Listen to Interpret: Post-hoc Interpretability for Audio Networks with
  NMF
Listen to Interpret: Post-hoc Interpretability for Audio Networks with NMF
Jayneel Parekh
Sanjeel Parekh
Pavlo Mozharovskyi
Florence dÁlché-Buc
G. Richard
24
22
0
23 Feb 2022
The Out-of-Distribution Problem in Explainability and Search Methods for
  Feature Importance Explanations
The Out-of-Distribution Problem in Explainability and Search Methods for Feature Importance Explanations
Peter Hase
Harry Xie
Joey Tianyi Zhou
OODD
LRM
FAtt
29
91
0
01 Jun 2021
Progressive Interpretation Synthesis: Interpreting Task Solving by
  Quantifying Previously Used and Unused Information
Progressive Interpretation Synthesis: Interpreting Task Solving by Quantifying Previously Used and Unused Information
Zhengqi He
Taro Toyoizumi
19
1
0
08 Jan 2021
Inserting Information Bottlenecks for Attribution in Transformers
Inserting Information Bottlenecks for Attribution in Transformers
Zhiying Jiang
Raphael Tang
Ji Xin
Jimmy J. Lin
41
6
0
27 Dec 2020
Learning Variational Word Masks to Improve the Interpretability of
  Neural Text Classifiers
Learning Variational Word Masks to Improve the Interpretability of Neural Text Classifiers
Hanjie Chen
Yangfeng Ji
AAML
VLM
15
63
0
01 Oct 2020
Generative causal explanations of black-box classifiers
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
30
73
0
24 Jun 2020
On the Maximum Mutual Information Capacity of Neural Architectures
On the Maximum Mutual Information Capacity of Neural Architectures
Brandon Foggo
Nan Yu
TPM
23
3
0
10 Jun 2020
Why Attentions May Not Be Interpretable?
Why Attentions May Not Be Interpretable?
Bing Bai
Jian Liang
Guanhua Zhang
Hao Li
Kun Bai
Fei Wang
FAtt
25
56
0
10 Jun 2020
Adversarial Infidelity Learning for Model Interpretation
Adversarial Infidelity Learning for Model Interpretation
Jian Liang
Bing Bai
Yuren Cao
Kun Bai
Fei Wang
AAML
54
18
0
09 Jun 2020
1