ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.07249
  4. Cited By
Discovery of Natural Language Concepts in Individual Units of CNNs
v1v2 (latest)

Discovery of Natural Language Concepts in Individual Units of CNNs

18 February 2019
Seil Na
Yo Joong Choe
Dong-Hyun Lee
Gunhee Kim
    MILM
ArXiv (abs)PDFHTML

Papers citing "Discovery of Natural Language Concepts in Individual Units of CNNs"

16 / 16 papers shown
NeuroStrike: Neuron-Level Attacks on Aligned LLMs
NeuroStrike: Neuron-Level Attacks on Aligned LLMs
Lichao Wu
Sasha Behrouzi
Mohamadreza Rostami
Maximilian Thang
S. Picek
A. Sadeghi
AAML
240
1
0
15 Sep 2025
Mechanistic?
Mechanistic?BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP (BlackBoxNLP), 2024
Naomi Saphra
Sarah Wiegreffe
AI4CE
260
32
0
07 Oct 2024
Towards Generating Informative Textual Description for Neurons in
  Language Models
Towards Generating Informative Textual Description for Neurons in Language Models
Shrayani Mondal
Rishabh Garodia
Arbaaz Qureshi
Taesung Lee
Youngja Park
MILM
180
1
0
30 Jan 2024
Manipulating Feature Visualizations with Gradient Slingshots
Manipulating Feature Visualizations with Gradient Slingshots
Dilyara Bareeva
Marina M.-C. Höhne
Alexander Warnecke
Lukas Pirch
Klaus-Robert Müller
Konrad Rieck
Sebastian Lapuschkin
Kirill Bykov
AAML
390
6
0
11 Jan 2024
On the special role of class-selective neurons in early training
On the special role of class-selective neurons in early training
Omkar Ranadive
Nikhil Thakurdesai
Ari S. Morcos
Matthew L. Leavitt
Stéphane Deny
191
5
0
27 May 2023
Explaining black box text modules in natural language with language
  models
Explaining black box text modules in natural language with language models
Chandan Singh
Aliyah R. Hsu
Richard Antonello
Shailee Jain
Alexander G. Huth
Bin Yu
Jianfeng Gao
MILM
274
66
0
17 May 2023
NxPlain: Web-based Tool for Discovery of Latent Concepts
NxPlain: Web-based Tool for Discovery of Latent ConceptsConference of the European Chapter of the Association for Computational Linguistics (EACL), 2023
Fahim Dalvi
Nadir Durrani
Hassan Sajjad
Tamim Jaban
Musab Husaini
Ummar Abbas
197
1
0
06 Mar 2023
Discovering Salient Neurons in Deep NLP Models
Discovering Salient Neurons in Deep NLP ModelsJournal of machine learning research (JMLR), 2022
Nadir Durrani
Fahim Dalvi
Hassan Sajjad
KELMMILM
304
20
0
27 Jun 2022
On the Symmetries of Deep Learning Models and their Internal
  Representations
On the Symmetries of Deep Learning Models and their Internal RepresentationsNeural Information Processing Systems (NeurIPS), 2022
Charles Godfrey
Davis Brown
Tegan H. Emerson
Henry Kvinge
342
56
0
27 May 2022
Neuron-level Interpretation of Deep NLP Models: A Survey
Neuron-level Interpretation of Deep NLP Models: A SurveyTransactions of the Association for Computational Linguistics (TACL), 2021
Hassan Sajjad
Nadir Durrani
Fahim Dalvi
MILMAI4CE
306
95
0
30 Aug 2021
Fine-grained Interpretation and Causation Analysis in Deep NLP Models
Fine-grained Interpretation and Causation Analysis in Deep NLP ModelsNorth American Chapter of the Association for Computational Linguistics (NAACL), 2021
Hassan Sajjad
Narine Kokhlikyan
Fahim Dalvi
Nadir Durrani
MILM
307
8
0
17 May 2021
An Interpretability Illusion for BERT
An Interpretability Illusion for BERT
Tolga Bolukbasi
Adam Pearce
Ann Yuan
Andy Coenen
Emily Reif
Fernanda Viégas
Martin Wattenberg
MILMFAtt
222
93
0
14 Apr 2021
Towards falsifiable interpretability research
Towards falsifiable interpretability research
Matthew L. Leavitt
Ari S. Morcos
AAMLAI4CE
255
73
0
22 Oct 2020
Linking average- and worst-case perturbation robustness via class
  selectivity and dimensionality
Linking average- and worst-case perturbation robustness via class selectivity and dimensionality
Matthew L. Leavitt
Ari S. Morcos
AAML
197
2
0
14 Oct 2020
Are there any óbject detectors' in the hidden layers of CNNs trained to
  identify objects or scenes?
Are there any óbject detectors' in the hidden layers of CNNs trained to identify objects or scenes?
E. Gale
Nicholas Martin
R. Blything
Anh Nguyen
J. Bowers
138
15
0
02 Jul 2020
Selectivity considered harmful: evaluating the causal impact of class
  selectivity in DNNs
Selectivity considered harmful: evaluating the causal impact of class selectivity in DNNsInternational Conference on Learning Representations (ICLR), 2020
Matthew L. Leavitt
Ari S. Morcos
248
33
0
03 Mar 2020
1