ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.10501
  4. Cited By
Atomistic structure learning

Atomistic structure learning

Journal of Chemical Physics (JCP), 2019
27 February 2019
M. Jørgensen
H. L. Mortensen
S. A. Meldgaard
E. L. Kolsbjerg
Thomas L. Jacobsen
K. H. Sørensen
B. Hammer
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Atomistic structure learning"

7 / 7 papers shown
Title
Scalable learning of potentials to predict time-dependent Hartree-Fock
  dynamics
Scalable learning of potentials to predict time-dependent Hartree-Fock dynamicsAPL Machine Learning (AML), 2024
Harish S. Bhat
Prachi Gupta
Christine M Isborn
134
3
0
08 Aug 2024
Accelerating the prediction of inorganic surfaces with machine learning
  interatomic potentials
Accelerating the prediction of inorganic surfaces with machine learning interatomic potentials
Kyle Noordhoek
Christopher J. Bartel
AI4CE
209
10
0
18 Dec 2023
Symmetry-Aware Actor-Critic for 3D Molecular Design
Symmetry-Aware Actor-Critic for 3D Molecular DesignInternational Conference on Learning Representations (ICLR), 2020
G. Simm
Tian Xie
Gábor Csányi
José Miguel Hernández-Lobato
AI4CE
167
71
0
25 Nov 2020
Machine Learning a Molecular Hamiltonian for Predicting Electron
  Dynamics
Machine Learning a Molecular Hamiltonian for Predicting Electron DynamicsInternational Journal of Dynamics and Control (IJDC), 2020
Harish S. Bhat
Karnamohit Ranka
Christine M Isborn
157
14
0
19 Jul 2020
Atomistic Structure Learning Algorithm with surrogate energy model
  relaxation
Atomistic Structure Learning Algorithm with surrogate energy model relaxationPhysical review B (PRB), 2020
H. L. Mortensen
S. A. Meldgaard
M. K. Bisbo
Mads-Peter V. Christiansen
B. Hammer
82
17
0
15 Jul 2020
Reinforcement Learning for Molecular Design Guided by Quantum Mechanics
Reinforcement Learning for Molecular Design Guided by Quantum MechanicsInternational Conference on Machine Learning (ICML), 2020
G. Simm
Tian Xie
José Miguel Hernández-Lobato
AI4CE
206
88
0
18 Feb 2020
Generative Models for Automatic Chemical Design
Generative Models for Automatic Chemical Design
Daniel Schwalbe-Koda
Rafael Gómez-Bombarelli
MedImAI4CE
150
87
0
02 Jul 2019
1