ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1902.11123
  4. Cited By
Adaptive Masked Proxies for Few-Shot Segmentation

Adaptive Masked Proxies for Few-Shot Segmentation

19 February 2019
Mennatullah Siam
Boris N. Oreshkin
Martin Jägersand
ArXivPDFHTML

Papers citing "Adaptive Masked Proxies for Few-Shot Segmentation"

8 / 8 papers shown
Title
CRCNet: Few-shot Segmentation with Cross-Reference and Region-Global
  Conditional Networks
CRCNet: Few-shot Segmentation with Cross-Reference and Region-Global Conditional Networks
Weide Liu
Chi Zhang
Guosheng Lin
Fayao Liu
ISeg
SSeg
40
27
0
23 Aug 2022
MaskSplit: Self-supervised Meta-learning for Few-shot Semantic
  Segmentation
MaskSplit: Self-supervised Meta-learning for Few-shot Semantic Segmentation
Yunxin Li
Ahmet Sencan
Yunxin Ding
Nazli Ikizler-Cinbis
Hao Fei
VLM
SSL
32
10
0
23 Oct 2021
PFENet++: Boosting Few-shot Semantic Segmentation with the
  Noise-filtered Context-aware Prior Mask
PFENet++: Boosting Few-shot Semantic Segmentation with the Noise-filtered Context-aware Prior Mask
Xiaoliu Luo
Zhuotao Tian
Taiping Zhang
Bei Yu
Yuan Yan Tang
Jiaya Jia
46
37
0
28 Sep 2021
Few-Shot Segmentation with Global and Local Contrastive Learning
Few-Shot Segmentation with Global and Local Contrastive Learning
Weide Liu
Zhonghua Wu
Henghui Ding
Fayao Liu
Jie Lin
Guosheng Lin
Wei Zhou
45
24
0
11 Aug 2021
Generalized Few-shot Semantic Segmentation
Generalized Few-shot Semantic Segmentation
Zhuotao Tian
Xin Lai
Li Jiang
Shu Liu
Michelle Shu
Hengshuang Zhao
Jiaya Jia
VLM
27
81
0
11 Oct 2020
SML: Semantic Meta-learning for Few-shot Semantic Segmentation
SML: Semantic Meta-learning for Few-shot Semantic Segmentation
Ayyappa Kumar Pambala
Titir Dutta
Soma Biswas
24
22
0
14 Sep 2020
CRNet: Cross-Reference Networks for Few-Shot Segmentation
CRNet: Cross-Reference Networks for Few-Shot Segmentation
Weide Liu
Chi Zhang
Guosheng Lin
Fayao Liu
SSeg
163
192
0
24 Mar 2020
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
508
11,727
0
09 Mar 2017
1