ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.00415
  4. Cited By
Using natural language processing techniques to extract information on
  the properties and functionalities of energetic materials from large text
  corpora

Using natural language processing techniques to extract information on the properties and functionalities of energetic materials from large text corpora

1 March 2019
Daniel C. Elton
D. Turakhia
N. Reddy
Zois Boukouvalas
M. Fuge
R. Doherty
Peter W. Chung
ArXivPDFHTML

Papers citing "Using natural language processing techniques to extract information on the properties and functionalities of energetic materials from large text corpora"

3 / 3 papers shown
Title
ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance & Efficiency on a Specific Domain
ChemTEB: Chemical Text Embedding Benchmark, an Overview of Embedding Models Performance & Efficiency on a Specific Domain
Ali Shiraee Kasmaee
Mohammad Khodadad
Mohammad Arshi Saloot
Nick Sherck
Stephen Dokas
H. Mahyar
Soheila Samiee
ELM
204
0
0
30 Nov 2024
NLP for Knowledge Discovery and Information Extraction from Energetics
  Corpora
NLP for Knowledge Discovery and Information Extraction from Energetics Corpora
Francis G. VanGessel
Efrem Perry
Salil Mohan
Oliver M. Barham
Mark Cavolowsky
35
0
0
10 Feb 2024
Assessing the trade-off between prediction accuracy and interpretability
  for topic modeling on energetic materials corpora
Assessing the trade-off between prediction accuracy and interpretability for topic modeling on energetic materials corpora
Monica Puerto
Mason Kellett
Rodanthi Nikopoulou
M. Fuge
Ruth M. Doherty
Peter W. Chung
Zois Boukouvalas
31
1
0
01 Jun 2022
1