Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1903.00687
Cited By
v1
v2
v3 (latest)
A unifying representer theorem for inverse problems and machine learning
Foundations of Computational Mathematics (FoCM), 2019
2 March 2019
M. Unser
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A unifying representer theorem for inverse problems and machine learning"
18 / 18 papers shown
Title
The Effects of Multi-Task Learning on ReLU Neural Network Functions
Julia B. Nakhleh
Joseph Shenouda
Robert D. Nowak
319
1
0
29 Oct 2024
Global-to-Local Support Spectrums for Language Model Explainability
Lucas Agussurja
Xinyang Lu
Bryan Kian Hsiang Low
FAtt
146
0
0
12 Aug 2024
Efficient Algorithms for Regularized Nonnegative Scale-invariant Low-rank Approximation Models
Jeremy E. Cohen
Valentin Leplat
460
5
0
27 Mar 2024
Neural reproducing kernel Banach spaces and representer theorems for deep networks
Francesca Bartolucci
Ernesto De Vito
Lorenzo Rosasco
Stefano Vigogna
186
6
0
13 Mar 2024
Computerized Tomography and Reproducing Kernels
SIAM Review (SIAM Rev.), 2023
Ho Yun
V. Panaretos
186
1
0
13 Nov 2023
Function-Space Optimality of Neural Architectures with Multivariate Nonlinearities
SIAM Journal on Mathematics of Data Science (SIMODS), 2023
Rahul Parhi
Michael Unser
332
5
0
05 Oct 2023
Weighted variation spaces and approximation by shallow ReLU networks
Applied and Computational Harmonic Analysis (ACHA), 2023
Ronald A. DeVore
Robert D. Nowak
Rahul Parhi
Jonathan W. Siegel
238
6
0
28 Jul 2023
Sparse Representer Theorems for Learning in Reproducing Kernel Banach Spaces
Journal of machine learning research (JMLR), 2023
Rui Wang
Yuesheng Xu
Mingsong Yan
146
8
0
21 May 2023
Gradient Descent in Neural Networks as Sequential Learning in RKBS
A. Shilton
Sunil R. Gupta
Santu Rana
Svetha Venkatesh
MLT
247
2
0
01 Feb 2023
Delaunay-Triangulation-Based Learning with Hessian Total-Variation Regularization
IEEE Open Journal of Signal Processing (JOSP), 2022
Mehrsa Pourya
Alexis Goujon
M. Unser
158
8
0
16 Aug 2022
Stability of Image-Reconstruction Algorithms
IEEE Transactions on Computational Imaging (TCI), 2022
Pol del Aguila Pla
Sebastian Neumayer
M. Unser
333
11
0
14 Jun 2022
Optimal Learning
P. Binev
A. Bonito
Ronald A. DeVore
G. Petrova
FedML
225
0
0
30 Mar 2022
Sparsest Univariate Learning Models Under Lipschitz Constraint
IEEE Open Journal of Signal Processing (JOSP), 2021
Shayan Aziznejad
Thomas Debarre
M. Unser
152
4
0
27 Dec 2021
Functional Estimation of Anisotropic Covariance and Autocovariance Operators on the Sphere
Electronic Journal of Statistics (EJS), 2021
Alessia Caponera
Julien Fageot
Matthieu Simeoni
V. Panaretos
255
10
0
23 Dec 2021
Understanding neural networks with reproducing kernel Banach spaces
Francesca Bartolucci
Ernesto De Vito
Lorenzo Rosasco
Stefano Vigogna
242
58
0
20 Sep 2021
What Kinds of Functions do Deep Neural Networks Learn? Insights from Variational Spline Theory
SIAM Journal on Mathematics of Data Science (SIMODS), 2021
Rahul Parhi
Robert D. Nowak
MLT
310
75
0
07 May 2021
Two-layer neural networks with values in a Banach space
SIAM Journal on Mathematical Analysis (SIAM J. Math. Anal.), 2021
Yury Korolev
382
29
0
05 May 2021
Banach Space Representer Theorems for Neural Networks and Ridge Splines
Rahul Parhi
Robert D. Nowak
175
7
0
10 Jun 2020
1