ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.01139
27
30

Trajectory Replanning for Quadrotors Using Kinodynamic Search and Elastic Optimization

4 March 2019
Wenchao Ding
Wenliang Gao
Kaixuan Wang
Shaojie Shen
ArXivPDFHTML
Abstract

We focus on a replanning scenario for quadrotors where considering time efficiency, non-static initial state and dynamical feasibility is of great significance. We propose a real-time B-spline based kinodynamic (RBK) search algorithm, which transforms a position-only shortest path search (such as A* and Dijkstra) into an efficient kinodynamic search, by exploring the properties of B-spline parameterization. The RBK search is greedy and produces a dynamically feasible time-parameterized trajectory efficiently, which facilitates non-static initial state of the quadrotor. To cope with the limitation of the greedy search and the discretization induced by a grid structure, we adopt an elastic optimization (EO) approach as a post-optimization process, to refine the control point placement provided by the RBK search. The EO approach finds the optimal control point placement inside an expanded elastic tube which represents the free space, by solving a Quadratically Constrained Quadratic Programming (QCQP) problem. We design a receding horizon replanner based on the local control property of B-spline. A systematic comparison of our method against two state-of-the-art methods is provided. We integrate our replanning system with a monocular vision-based quadrotor and validate our performance onboard.

View on arXiv
Comments on this paper