ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.01720
  4. Cited By
Multi-Agent Learning in Network Zero-Sum Games is a Hamiltonian System

Multi-Agent Learning in Network Zero-Sum Games is a Hamiltonian System

5 March 2019
James P. Bailey
Georgios Piliouras
ArXivPDFHTML

Papers citing "Multi-Agent Learning in Network Zero-Sum Games is a Hamiltonian System"

4 / 4 papers shown
Title
The Hamiltonian of Poly-matrix Zero-sum Games
The Hamiltonian of Poly-matrix Zero-sum Games
Toshihiro Ota
Yuma Fujimoto
AI4CE
66
0
0
19 May 2025
Nash Equilibrium and Learning Dynamics in Three-Player Matching $m$-Action Games
Nash Equilibrium and Learning Dynamics in Three-Player Matching mmm-Action Games
Yuma Fujimoto
Kaito Ariu
Kenshi Abe
39
1
0
16 Feb 2024
Poincaré Recurrence, Cycles and Spurious Equilibria in
  Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Poincaré Recurrence, Cycles and Spurious Equilibria in Gradient-Descent-Ascent for Non-Convex Non-Concave Zero-Sum Games
Lampros Flokas
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Georgios Piliouras
MLT
53
41
0
28 Oct 2019
Introduction to Online Convex Optimization
Introduction to Online Convex Optimization
Elad Hazan
OffRL
108
1,922
0
07 Sep 2019
1