Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.02541
Cited By
Relational Pooling for Graph Representations
6 March 2019
R. Murphy
Balasubramaniam Srinivasan
Vinayak A. Rao
Bruno Ribeiro
GNN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Relational Pooling for Graph Representations"
50 / 61 papers shown
Title
Towards Invariance to Node Identifiers in Graph Neural Networks
Maya Bechler-Speicher
Moshe Eliasof
Carola-Bibiane Schönlieb
Ran Gilad-Bachrach
Amir Globerson
56
1
0
20 Feb 2025
Optimality of Message-Passing Architectures for Sparse Graphs
Aseem Baranwal
K. Fountoulakis
Aukosh Jagannath
81
11
0
10 Jan 2025
Towards Graph Foundation Models: A Study on the Generalization of Positional and Structural Encodings
Billy Joe Franks
Moshe Eliasof
Semih Cantürk
Guy Wolf
Carola-Bibiane Schönlieb
Sophie Fellenz
Marius Kloft
AI4CE
76
0
0
10 Dec 2024
Revisiting Random Walks for Learning on Graphs
Jinwoo Kim
Olga Zaghen
Ayhan Suleymanzade
Youngmin Ryou
Seunghoon Hong
59
0
0
01 Jul 2024
KAGNNs: Kolmogorov-Arnold Networks meet Graph Learning
Roman Bresson
Giannis Nikolentzos
G. Panagopoulos
Michail Chatzianastasis
Jun Pang
Michalis Vazirgiannis
65
42
0
26 Jun 2024
Baking Symmetry into GFlowNets
George Ma
Emmanuel Bengio
Yoshua Bengio
Dinghuai Zhang
45
8
0
08 Jun 2024
Contextualized Messages Boost Graph Representations
Brian Godwin Lim
Galvin Brice Lim
Renzo Roel Tan
Kazushi Ikeda
AI4CE
70
1
0
19 Mar 2024
Topology-Informed Graph Transformer
Yuncheol Choi
Sun Woo Park
Minho Lee
Youngho Woo
21
3
0
03 Feb 2024
CktGNN: Circuit Graph Neural Network for Electronic Design Automation
Zehao Dong
Weidong Cao
Muhan Zhang
Dacheng Tao
Yixin Chen
Xuan Zhang
GNN
34
30
0
31 Aug 2023
The Expressive Power of Graph Neural Networks: A Survey
Bingxue Zhang
Changjun Fan
Shixuan Liu
Kuihua Huang
Xiang Zhao
Jin-Yu Huang
Zhong Liu
40
19
0
16 Aug 2023
Prot2Text: Multimodal Protein's Function Generation with GNNs and Transformers
Hadi Abdine
Michail Chatzianastasis
Costas Bouyioukos
Michalis Vazirgiannis
28
40
0
25 Jul 2023
Supervised Attention Using Homophily in Graph Neural Networks
Michail Chatzianastasis
Giannis Nikolentzos
Michalis Vazirgiannis
GNN
16
0
0
11 Jul 2023
Expectation-Complete Graph Representations with Homomorphisms
Pascal Welke
Maximilian Thiessen
Fabian Jogl
Thomas Gärtner
18
6
0
09 Jun 2023
Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
Jiarui Feng
Lecheng Kong
Hao Liu
Dacheng Tao
Fuhai Li
Muhan Zhang
Yixin Chen
44
10
0
05 Jun 2023
From Relational Pooling to Subgraph GNNs: A Universal Framework for More Expressive Graph Neural Networks
Cai Zhou
Xiyuan Wang
Muhan Zhang
28
14
0
08 May 2023
An Empirical Study of Realized GNN Expressiveness
Yanbo Wang
Muhan Zhang
39
10
0
16 Apr 2023
Equivariant Polynomials for Graph Neural Networks
Omri Puny
Derek Lim
B. Kiani
Haggai Maron
Y. Lipman
24
31
0
22 Feb 2023
Graph Neural Networks can Recover the Hidden Features Solely from the Graph Structure
Ryoma Sato
31
5
0
26 Jan 2023
A Generalization of ViT/MLP-Mixer to Graphs
Xiaoxin He
Bryan Hooi
T. Laurent
Adam Perold
Yann LeCun
Xavier Bresson
36
88
0
27 Dec 2022
Integration of Pre-trained Protein Language Models into Geometric Deep Learning Networks
Fang Wu
Yujun Tao
Dragomir R. Radev
Jinbo Xu
Stan Z. Li
AI4CE
27
32
0
07 Dec 2022
Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks
Anders Aamand
Justin Y. Chen
Piotr Indyk
Shyam Narayanan
R. Rubinfeld
Nicholas Schiefer
Sandeep Silwal
Tal Wagner
39
21
0
06 Nov 2022
Boosting the Cycle Counting Power of Graph Neural Networks with I
2
^2
2
-GNNs
Yinan Huang
Xingang Peng
Jianzhu Ma
Muhan Zhang
81
47
0
22 Oct 2022
Shortest Path Networks for Graph Property Prediction
Ralph Abboud
Radoslav Dimitrov
.Ismail .Ilkan Ceylan
GNN
27
44
0
02 Jun 2022
Graph-level Neural Networks: Current Progress and Future Directions
Ge Zhang
Jia Wu
Jian Yang
Shan Xue
Wenbin Hu
Chuan Zhou
Hao Peng
Quan.Z Sheng
Charu C. Aggarwal
GNN
AI4CE
38
0
0
31 May 2022
OOD Link Prediction Generalization Capabilities of Message-Passing GNNs in Larger Test Graphs
Yangze Zhou
Gitta Kutyniok
Bruno Ribeiro
OODD
AI4CE
73
37
0
30 May 2022
Recipe for a General, Powerful, Scalable Graph Transformer
Ladislav Rampášek
Mikhail Galkin
Vijay Prakash Dwivedi
A. Luu
Guy Wolf
Dominique Beaini
57
514
0
25 May 2022
Theory of Graph Neural Networks: Representation and Learning
Stefanie Jegelka
GNN
AI4CE
33
68
0
16 Apr 2022
SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks
Christopher Morris
Gaurav Rattan
Sandra Kiefer
Siamak Ravanbakhsh
44
39
0
25 Mar 2022
Equivariant and Stable Positional Encoding for More Powerful Graph Neural Networks
Hongya Wang
Haoteng Yin
Muhan Zhang
Pan Li
35
107
0
01 Mar 2022
Graph Filtration Kernels
Till Hendrik Schulz
Pascal Welke
Stefanie Wrobel
24
12
0
22 Oct 2021
From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness
Lingxiao Zhao
Wei Jin
L. Akoglu
Neil Shah
GNN
24
160
0
07 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
48
174
0
06 Oct 2021
Permute Me Softly: Learning Soft Permutations for Graph Representations
Giannis Nikolentzos
George Dasoulas
Michalis Vazirgiannis
GNN
34
9
0
05 Oct 2021
Reconstruction for Powerful Graph Representations
Leonardo Cotta
Christopher Morris
Bruno Ribeiro
AI4CE
127
78
0
01 Oct 2021
Graph Neural Networks for Graph Drawing
Matteo Tiezzi
Gabriele Ciravegna
Marco Gori
21
20
0
21 Sep 2021
Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study
Tianlong Chen
Kaixiong Zhou
Keyu Duan
Wenqing Zheng
Peihao Wang
Xia Hu
Zhangyang Wang
AAML
GNN
27
61
0
24 Aug 2021
Global Self-Attention as a Replacement for Graph Convolution
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
31
121
0
07 Aug 2021
Simple GNN Regularisation for 3D Molecular Property Prediction & Beyond
Jonathan Godwin
Michael Schaarschmidt
Alex Gaunt
Alvaro Sanchez-Gonzalez
Yulia Rubanova
Petar Velivcković
J. Kirkpatrick
Peter W. Battaglia
36
60
0
15 Jun 2021
Scalars are universal: Equivariant machine learning, structured like classical physics
Soledad Villar
D. Hogg
Kate Storey-Fisher
Weichi Yao
Ben Blum-Smith
PINN
AI4CE
24
130
0
11 Jun 2021
Breaking the Limits of Message Passing Graph Neural Networks
M. Balcilar
Pierre Héroux
Benoit Gaüzère
Pascal Vasseur
Sébastien Adam
P. Honeine
13
121
0
08 Jun 2021
On the Equivalence Between Temporal and Static Graph Representations for Observational Predictions
Jianfei Gao
Bruno Ribeiro
27
11
0
12 Mar 2021
Size-Invariant Graph Representations for Graph Classification Extrapolations
Beatrice Bevilacqua
Yangze Zhou
Bruno Ribeiro
OOD
35
108
0
08 Mar 2021
Combinatorial optimization and reasoning with graph neural networks
Quentin Cappart
Didier Chételat
Elias Boutros Khalil
Andrea Lodi
Christopher Morris
Petar Velickovic
AI4CE
32
346
0
18 Feb 2021
Graph Neural Networks: Taxonomy, Advances and Trends
Yu Zhou
Haixia Zheng
Xin Huang
Shufeng Hao
Dengao Li
Jumin Zhao
AI4TS
25
115
0
16 Dec 2020
Design Space for Graph Neural Networks
Jiaxuan You
Rex Ying
J. Leskovec
GNN
AI4CE
19
315
0
17 Nov 2020
Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning
Pan Li
Yanbang Wang
Hongwei Wang
J. Leskovec
GNN
20
12
0
31 Aug 2020
Expressive Power of Invariant and Equivariant Graph Neural Networks
Waïss Azizian
Marc Lelarge
22
111
0
28 Jun 2020
Hierarchical Inter-Message Passing for Learning on Molecular Graphs
Matthias Fey
Jan-Gin Yuen
F. Weichert
GNN
30
86
0
22 Jun 2020
Subgraph Neural Networks
Emily Alsentzer
S. G. Finlayson
Michelle M. Li
Marinka Zitnik
GNN
18
134
0
18 Jun 2020
Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting
Giorgos Bouritsas
Fabrizio Frasca
S. Zafeiriou
M. Bronstein
46
423
0
16 Jun 2020
1
2
Next