ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.03051
  4. Cited By
Training on the Edge: The why and the how

Training on the Edge: The why and the how

IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPS), 2019
13 February 2019
Navjot Kukreja
Alena Shilova
Olivier Beaumont
Jan Huckelheim
N. Ferrier
P. Hovland
Gerard Gorman
ArXiv (abs)PDFHTML

Papers citing "Training on the Edge: The why and the how"

10 / 10 papers shown
Title
Real-time Continual Learning on Intel Loihi 2
Real-time Continual Learning on Intel Loihi 2
Elvin Hajizada
Danielle Rager
Timothy M. Shea
L. Campos-Macias
Andreas Wild
Eyke Hüllermeier
Yulia Sandamirskaya
Mike Davies
CLLOffRL
139
0
0
03 Nov 2025
UltraFlwr -- An Efficient Federated Medical and Surgical Object Detection Framework
UltraFlwr -- An Efficient Federated Medical and Surgical Object Detection Framework
Yang Li
Soumya Snigdha Kundu
Maxence Boels
Toktam Mahmoodi
Sebastien Ourselin
Tom Vercauteren
Prokar Dasgupta
J. Shapey
Alejandro Granados
FedML
142
1
0
19 Mar 2025
Regularization-based Framework for Quantization-, Fault- and Variability-Aware Training
Regularization-based Framework for Quantization-, Fault- and Variability-Aware Training
Anmol Biswas
Raghav Singhal
Sivakumar Elangovan
Shreyas Sabnis
U. Ganguly
MQ
290
2
0
03 Mar 2025
Achieving Pareto Optimality using Efficient Parameter Reduction for DNNs
  in Resource-Constrained Edge Environment
Achieving Pareto Optimality using Efficient Parameter Reduction for DNNs in Resource-Constrained Edge Environment
Atah Nuh Mih
Alireza Rahimi
Asfia Kawnine
Francis Palma
Monica Wachowicz
R. Dubay
Hung Cao
222
0
0
14 Mar 2024
Developing a Resource-Constraint EdgeAI model for Surface Defect
  Detection
Developing a Resource-Constraint EdgeAI model for Surface Defect Detection
Atah Nuh Mih
Hung Cao
Asfia Kawnine
Monica Wachowicz
78
0
0
04 Dec 2023
ECAvg: An Edge-Cloud Collaborative Learning Approach using Averaged
  Weights
ECAvg: An Edge-Cloud Collaborative Learning Approach using Averaged WeightsIEEE International Conference on Consumer Electronics (ICCE), 2023
Atah Nuh Mih
Hung Cao
Asfia Kawnine
Monica Wachowicz
91
1
0
05 Oct 2023
Performance Analysis of DNN Inference/Training with Convolution and
  non-Convolution Operations
Performance Analysis of DNN Inference/Training with Convolution and non-Convolution Operations
H. Esmaeilzadeh
Soroush Ghodrati
A. Kahng
Sean Kinzer
Susmita Dey Manasi
S. Sapatnekar
Zhiang Wang
161
3
0
29 Jun 2023
Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
  literature review
Distributed intelligence on the Edge-to-Cloud Continuum: A systematic literature review
Daniel Rosendo
Alexandru Costan
P. Valduriez
Gabriel Antoniu
200
102
0
29 Apr 2022
TRIM: A Design Space Exploration Model for Deep Neural Networks
  Inference and Training Accelerators
TRIM: A Design Space Exploration Model for Deep Neural Networks Inference and Training AcceleratorsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (IEEE TCAD), 2021
Yangjie Qi
Shuo Zhang
T. Taha
86
6
0
18 May 2021
TinyOL: TinyML with Online-Learning on Microcontrollers
TinyOL: TinyML with Online-Learning on MicrocontrollersIEEE International Joint Conference on Neural Network (IJCNN), 2021
Haoyu Ren
Darko Anicic
Thomas Runkler
243
160
0
15 Mar 2021
1