ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.04717
  4. Cited By
Activation Analysis of a Byte-Based Deep Neural Network for Malware
  Classification

Activation Analysis of a Byte-Based Deep Neural Network for Malware Classification

12 March 2019
Scott E. Coull
Christopher Gardner
ArXivPDFHTML

Papers citing "Activation Analysis of a Byte-Based Deep Neural Network for Malware Classification"

8 / 8 papers shown
Title
Updating Windows Malware Detectors: Balancing Robustness and Regression against Adversarial EXEmples
Updating Windows Malware Detectors: Balancing Robustness and Regression against Adversarial EXEmples
M. Kozák
Christian Scano
Dmitrijs Trizna
Fabio Roli
AAML
44
0
0
04 May 2024
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
AttackBench: Evaluating Gradient-based Attacks for Adversarial Examples
Antonio Emanuele Cinà
Jérôme Rony
Maura Pintor
Christian Scano
Ambra Demontis
Battista Biggio
Ismail Ben Ayed
Fabio Roli
ELM
AAML
SILM
46
8
0
30 Apr 2024
High-resolution Image-based Malware Classification using Multiple
  Instance Learning
High-resolution Image-based Malware Classification using Multiple Instance Learning
Tim Peters
H. Farhat
19
0
0
21 Nov 2023
Transformers for End-to-End InfoSec Tasks: A Feasibility Study
Transformers for End-to-End InfoSec Tasks: A Feasibility Study
Ethan M. Rudd
Mohammad Saidur Rahman
Philip Tully
30
5
0
05 Dec 2022
Adversarial Attacks against Windows PE Malware Detection: A Survey of
  the State-of-the-Art
Adversarial Attacks against Windows PE Malware Detection: A Survey of the State-of-the-Art
Xiang Ling
Lingfei Wu
Jiangyu Zhang
Zhenqing Qu
Wei Deng
...
Chunming Wu
S. Ji
Tianyue Luo
Jingzheng Wu
Yanjun Wu
AAML
44
74
0
23 Dec 2021
A Comparison of State-of-the-Art Techniques for Generating Adversarial
  Malware Binaries
A Comparison of State-of-the-Art Techniques for Generating Adversarial Malware Binaries
P. Dasgupta
Zachary Osman
AAML
36
2
0
22 Nov 2021
secml-malware: Pentesting Windows Malware Classifiers with Adversarial
  EXEmples in Python
secml-malware: Pentesting Windows Malware Classifiers with Adversarial EXEmples in Python
Christian Scano
Battista Biggio
AAML
37
11
0
26 Apr 2021
Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
  Attacks on Machine Learning for Windows Malware Detection
Adversarial EXEmples: A Survey and Experimental Evaluation of Practical Attacks on Machine Learning for Windows Malware Detection
Christian Scano
Scott E. Coull
Battista Biggio
Giovanni Lagorio
A. Armando
Fabio Roli
AAML
35
59
0
17 Aug 2020
1