ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.05594
  4. Cited By
Gaussian Process Optimization with Adaptive Sketching: Scalable and No
  Regret

Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret

13 March 2019
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
    GP
ArXivPDFHTML

Papers citing "Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret"

21 / 21 papers shown
Title
Bayesian Optimization by Kernel Regression and Density-based Exploration
Bayesian Optimization by Kernel Regression and Density-based Exploration
Tansheng Zhu
Hongyu Zhou
Ke Jin
Xusheng Xu
Qiufan Yuan
Lijie Ji
248
0
0
10 Feb 2025
Differentially Private Kernelized Contextual Bandits
Differentially Private Kernelized Contextual Bandits
Nikola Pavlovic
Sudeep Salgia
Qing Zhao
42
1
0
13 Jan 2025
An Online Learning Approach to Prompt-based Selection of Generative Models
An Online Learning Approach to Prompt-based Selection of Generative Models
Xiaoyan Hu
Ho-fung Leung
Farzan Farnia
51
2
0
17 Oct 2024
Global Optimization with Parametric Function Approximation
Global Optimization with Parametric Function Approximation
Chong Liu
Yu Wang
41
7
0
16 Nov 2022
Collaborative Learning in Kernel-based Bandits for Distributed Users
Collaborative Learning in Kernel-based Bandits for Distributed Users
Sudeep Salgia
Sattar Vakili
Qing Zhao
FedML
44
6
0
16 Jul 2022
Online SuBmodular + SuPermodular (BP) Maximization with Bandit Feedback
Online SuBmodular + SuPermodular (BP) Maximization with Bandit Feedback
Adhyyan Narang
Omid Sadeghi
Lillian J. Ratliff
Maryam Fazel
J. Bilmes
OffRL
18
1
0
07 Jul 2022
Efficient Kernel UCB for Contextual Bandits
Efficient Kernel UCB for Contextual Bandits
Houssam Zenati
A. Bietti
Eustache Diemert
Julien Mairal
Matthieu Martin
Pierre Gaillard
32
3
0
11 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in
  Kernel-Based Learning
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
38
18
0
08 Feb 2022
Efficient Exploration in Binary and Preferential Bayesian Optimization
Efficient Exploration in Binary and Preferential Bayesian Optimization
T. Fauvel
M. Chalk
35
7
0
18 Oct 2021
Uniform Generalization Bounds for Overparameterized Neural Networks
Uniform Generalization Bounds for Overparameterized Neural Networks
Sattar Vakili
Michael Bromberg
Jezabel R. Garcia
Da-shan Shiu
A. Bernacchia
35
19
0
13 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
39
51
0
20 Aug 2021
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by
  Adaptive Discretization
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization
Marco Rando
Luigi Carratino
S. Villa
Lorenzo Rosasco
44
5
0
16 Jun 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process
  Regression
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
31
65
0
06 May 2021
No-Regret Algorithms for Private Gaussian Process Bandit Optimization
No-Regret Algorithms for Private Gaussian Process Bandit Optimization
Abhimanyu Dubey
22
13
0
24 Feb 2021
On Function Approximation in Reinforcement Learning: Optimism in the
  Face of Large State Spaces
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
44
18
0
09 Nov 2020
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Asynchronous ε-Greedy Bayesian Optimisation
Asynchronous ε-Greedy Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
35
5
0
15 Oct 2020
Local Differential Privacy for Bayesian Optimization
Local Differential Privacy for Bayesian Optimization
Xingyu Zhou
Jian Tan
22
24
0
13 Oct 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
29
128
0
15 Sep 2020
Convergence of Sparse Variational Inference in Gaussian Processes
  Regression
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
31
69
0
01 Aug 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
1