Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1903.05594
Cited By
Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret
13 March 2019
Daniele Calandriello
Luigi Carratino
A. Lazaric
Michal Valko
Lorenzo Rosasco
GP
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Gaussian Process Optimization with Adaptive Sketching: Scalable and No Regret"
21 / 21 papers shown
Title
Bayesian Optimization by Kernel Regression and Density-based Exploration
Tansheng Zhu
Hongyu Zhou
Ke Jin
Xusheng Xu
Qiufan Yuan
Lijie Ji
248
0
0
10 Feb 2025
Differentially Private Kernelized Contextual Bandits
Nikola Pavlovic
Sudeep Salgia
Qing Zhao
42
1
0
13 Jan 2025
An Online Learning Approach to Prompt-based Selection of Generative Models
Xiaoyan Hu
Ho-fung Leung
Farzan Farnia
51
2
0
17 Oct 2024
Global Optimization with Parametric Function Approximation
Chong Liu
Yu Wang
41
7
0
16 Nov 2022
Collaborative Learning in Kernel-based Bandits for Distributed Users
Sudeep Salgia
Sattar Vakili
Qing Zhao
FedML
44
6
0
16 Jul 2022
Online SuBmodular + SuPermodular (BP) Maximization with Bandit Feedback
Adhyyan Narang
Omid Sadeghi
Lillian J. Ratliff
Maryam Fazel
J. Bilmes
OffRL
18
1
0
07 Jul 2022
Efficient Kernel UCB for Contextual Bandits
Houssam Zenati
A. Bietti
Eustache Diemert
Julien Mairal
Matthieu Martin
Pierre Gaillard
32
3
0
11 Feb 2022
Improved Convergence Rates for Sparse Approximation Methods in Kernel-Based Learning
Sattar Vakili
Jonathan Scarlett
Da-shan Shiu
A. Bernacchia
38
18
0
08 Feb 2022
Efficient Exploration in Binary and Preferential Bayesian Optimization
T. Fauvel
M. Chalk
35
7
0
18 Oct 2021
Uniform Generalization Bounds for Overparameterized Neural Networks
Sattar Vakili
Michael Bromberg
Jezabel R. Garcia
Da-shan Shiu
A. Bernacchia
35
19
0
13 Sep 2021
Optimal Order Simple Regret for Gaussian Process Bandits
Sattar Vakili
N. Bouziani
Sepehr Jalali
A. Bernacchia
Da-shan Shiu
39
51
0
20 Aug 2021
Ada-BKB: Scalable Gaussian Process Optimization on Continuous Domains by Adaptive Discretization
Marco Rando
Luigi Carratino
S. Villa
Lorenzo Rosasco
44
5
0
16 Jun 2021
Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression
Christian Fiedler
C. Scherer
Sebastian Trimpe
GP
31
65
0
06 May 2021
No-Regret Algorithms for Private Gaussian Process Bandit Optimization
Abhimanyu Dubey
22
13
0
24 Feb 2021
On Function Approximation in Reinforcement Learning: Optimism in the Face of Large State Spaces
Zhuoran Yang
Chi Jin
Zhaoran Wang
Mengdi Wang
Michael I. Jordan
44
18
0
09 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Asynchronous ε-Greedy Bayesian Optimisation
George De Ath
Richard Everson
J. Fieldsend
35
5
0
15 Oct 2020
Local Differential Privacy for Bayesian Optimization
Xingyu Zhou
Jian Tan
22
24
0
13 Oct 2020
On Information Gain and Regret Bounds in Gaussian Process Bandits
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
29
128
0
15 Sep 2020
Convergence of Sparse Variational Inference in Gaussian Processes Regression
David R. Burt
C. Rasmussen
Mark van der Wilk
31
69
0
01 Aug 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
13
34
0
09 Jun 2020
1