ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.07903
  4. Cited By
NeuralHydrology -- Interpreting LSTMs in Hydrology
v1v2 (latest)

NeuralHydrology -- Interpreting LSTMs in Hydrology

19 March 2019
Frederik Kratzert
M. Herrnegger
D. Klotz
Sepp Hochreiter
Günter Klambauer
ArXiv (abs)PDFHTML

Papers citing "NeuralHydrology -- Interpreting LSTMs in Hydrology"

14 / 14 papers shown
Implementing a GRU Neural Network for Flood Prediction in Ashland City,
  Tennessee
Implementing a GRU Neural Network for Flood Prediction in Ashland City, Tennessee
George K. Fordjour
A. Kalyanapu
170
2
0
16 May 2024
Time Series Predictions in Unmonitored Sites: A Survey of Machine
  Learning Techniques in Water Resources
Time Series Predictions in Unmonitored Sites: A Survey of Machine Learning Techniques in Water ResourcesEnvironmental Data Science (EDS), 2023
J. Willard
C. Varadharajan
X. Jia
Vipin Kumar
AI4TS
274
19
0
18 Aug 2023
Inferring the past: a combined CNN-LSTM deep learning framework to fuse
  satellites for historical inundation mapping
Inferring the past: a combined CNN-LSTM deep learning framework to fuse satellites for historical inundation mapping
J. Giezendanner
Rohit Mukherjee
Matthew Purri
Mitchell Thomas
Max Mauerman
A. Islam
B. Tellman
151
11
0
01 May 2023
Explainable AI for Time Series via Virtual Inspection Layers
Explainable AI for Time Series via Virtual Inspection LayersPattern Recognition (Pattern Recogn.), 2023
Johanna Vielhaben
Sebastian Lapuschkin
G. Montavon
Wojciech Samek
XAIAI4TS
239
42
0
11 Mar 2023
Disentangled Explanations of Neural Network Predictions by Finding
  Relevant Subspaces
Disentangled Explanations of Neural Network Predictions by Finding Relevant SubspacesIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Pattarawat Chormai
J. Herrmann
Klaus-Robert Muller
G. Montavon
FAtt
438
29
0
30 Dec 2022
Imputation of Missing Streamflow Data at Multiple Gauging Stations in
  Benin Republic
Imputation of Missing Streamflow Data at Multiple Gauging Stations in Benin Republic
R. Mbuvha
J. Adounkpe
W. Mongwe
M. Houngnibo
N. Newlands
T. Marwala
44
2
0
17 Nov 2022
Few-Shot Learning by Dimensionality Reduction in Gradient Space
Few-Shot Learning by Dimensionality Reduction in Gradient Space
M. Gauch
M. Beck
Thomas Adler
D. Kotsur
Stefan Fiel
...
Markus Holzleitner
Werner Zellinger
D. Klotz
Sepp Hochreiter
Sebastian Lehner
191
11
0
07 Jun 2022
Toward Explainable AI for Regression Models
Toward Explainable AI for Regression ModelsIEEE Signal Processing Magazine (IEEE SPM), 2021
S. Letzgus
Patrick Wagner
Jonas Lederer
Wojciech Samek
Klaus-Robert Muller
G. Montavon
XAI
234
83
0
21 Dec 2021
Transfer learning to improve streamflow forecasts in data sparse regions
Transfer learning to improve streamflow forecasts in data sparse regions
R. Oruche
Lisa Egede
T. Baker
Fearghal O'Donncha
AI4TS
144
14
0
06 Dec 2021
Capabilities of Deep Learning Models on Learning Physical Relationships:
  Case of Rainfall-Runoff Modeling with LSTM
Capabilities of Deep Learning Models on Learning Physical Relationships: Case of Rainfall-Runoff Modeling with LSTMScience of the Total Environment (Sci. Total Environ.), 2021
Kazuki Yokoo
K. Ishida
A. Ercan
T. Tu
T. Nagasato
M. Kiyama
Motoki Amagasaki
244
46
0
15 Jun 2021
MC-LSTM: Mass-Conserving LSTM
MC-LSTM: Mass-Conserving LSTMInternational Conference on Machine Learning (ICML), 2021
Pieter-Jan Hoedt
Frederik Kratzert
D. Klotz
Christina Halmich
Markus Holzleitner
G. Nearing
Sepp Hochreiter
Günter Klambauer
254
70
0
13 Jan 2021
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
401
87
0
17 Mar 2020
Enhancing streamflow forecast and extracting insights using long-short
  term memory networks with data integration at continental scales
Enhancing streamflow forecast and extracting insights using long-short term memory networks with data integration at continental scalesWater Resources Research (WRR), 2019
D. Feng
K. Fang
Chaopeng Shen
AI4TS
235
349
0
18 Dec 2019
Towards Learning Universal, Regional, and Local Hydrological Behaviors
  via Machine-Learning Applied to Large-Sample Datasets
Towards Learning Universal, Regional, and Local Hydrological Behaviors via Machine-Learning Applied to Large-Sample DatasetsHydrology and Earth System Sciences (HESS), 2019
Frederik Kratzert
D. Klotz
Guy Shalev
Günter Klambauer
Sepp Hochreiter
G. Nearing
271
713
0
19 Jul 2019
1
Page 1 of 1