Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1903.10399
Cited By
Learning-to-Learn Stochastic Gradient Descent with Biased Regularization
25 March 2019
Giulia Denevi
C. Ciliberto
Riccardo Grazzi
Massimiliano Pontil
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Learning-to-Learn Stochastic Gradient Descent with Biased Regularization"
50 / 76 papers shown
Title
Meta-learning of shared linear representations beyond well-specified linear regression
Mathieu Even
Laurent Massoulié
254
0
0
31 Jan 2025
Imperative Learning: A Self-supervised Neuro-Symbolic Learning Framework for Robot Autonomy
The international journal of robotics research (IJRR), 2024
Chen Wang
Kaiyi Ji
Shaoshu Su
Zhongqiang Ren
Taimeng Fu
...
Yi Du
Qihang Li
Yue Yang
Xiao Lin
Zhipeng Zhao
SSL
372
18
0
28 Jan 2025
Theoretical Investigations and Practical Enhancements on Tail Task Risk Minimization in Meta Learning
Neural Information Processing Systems (NeurIPS), 2024
Yiqin Lv
Qi Wang
Dong Liang
Zheng Xie
191
5
0
30 Oct 2024
Meta-Reinforcement Learning with Universal Policy Adaptation: Provable Near-Optimality under All-task Optimum Comparator
Neural Information Processing Systems (NeurIPS), 2024
Siyuan Xu
Minghui Zhu
OffRL
148
2
0
13 Oct 2024
A Statistical Theory of Regularization-Based Continual Learning
Xuyang Zhao
Huiyuan Wang
Weiran Huang
Wei Lin
181
24
0
10 Jun 2024
A CMDP-within-online framework for Meta-Safe Reinforcement Learning
Vanshaj Khattar
Yuhao Ding
Bilgehan Sel
Javad Lavaei
Ming Jin
OffRL
145
18
0
26 May 2024
Reawakening knowledge: Anticipatory recovery from catastrophic interference via structured training
Neural Information Processing Systems (NeurIPS), 2024
Yanlai Yang
Matt Jones
Michael C. Mozer
Mengye Ren
171
3
0
14 Mar 2024
More Flexible PAC-Bayesian Meta-Learning by Learning Learning Algorithms
Hossein Zakerinia
Amin Behjati
Christoph H. Lampert
FedML
162
9
0
06 Feb 2024
Leveraging Gradients for Unsupervised Accuracy Estimation under Distribution Shift
Renchunzi Xie
Ambroise Odonnat
Vasilii Feofanov
I. Redko
Jianfeng Zhang
Bo An
UQCV
297
1
0
17 Jan 2024
Learning to Relax: Setting Solver Parameters Across a Sequence of Linear System Instances
International Conference on Learning Representations (ICLR), 2023
M. Khodak
Edmond Chow
Maria-Florina Balcan
Ameet Talwalkar
140
0
0
03 Oct 2023
A Simple Yet Effective Strategy to Robustify the Meta Learning Paradigm
Neural Information Processing Systems (NeurIPS), 2023
Qi Wang
Yiqin Lv
Yanghe Feng
Zheng Xie
Jincai Huang
163
14
0
01 Oct 2023
Nonlinear Meta-Learning Can Guarantee Faster Rates
SIAM Journal on Mathematics of Data Science (SIMODS), 2023
Dimitri Meunier
Zhu Li
Arthur Gretton
Samory Kpotufe
304
7
0
20 Jul 2023
Hypothesis Transfer Learning with Surrogate Classification Losses: Generalization Bounds through Algorithmic Stability
International Conference on Machine Learning (ICML), 2023
Anass Aghbalou
Guillaume Staerman
163
6
0
31 May 2023
Towards Constituting Mathematical Structures for Learning to Optimize
International Conference on Machine Learning (ICML), 2023
Jialin Liu
Xiaohan Chen
Zhangyang Wang
W. Yin
HanQin Cai
177
16
0
29 May 2023
DAC-MR: Data Augmentation Consistency Based Meta-Regularization for Meta-Learning
Jun Shu
Xiang Yuan
Deyu Meng
Zongben Xu
157
5
0
13 May 2023
Bayes meets Bernstein at the Meta Level: an Analysis of Fast Rates in Meta-Learning with PAC-Bayes
Charles Riou
Pierre Alquier
Badr-Eddine Chérief-Abdellatif
173
10
0
23 Feb 2023
Improving Meta-Learning Generalization with Activation-Based Early-Stopping
Simon Guiroy
C. Pal
Gonçalo Mordido
Sarath Chandar
151
3
0
03 Aug 2022
EEML: Ensemble Embedded Meta-learning
WISE (WISE), 2022
Geng Li
Boyuan Ren
Hongzhi Wang
FedML
100
2
0
18 Jun 2022
Provable Generalization of Overparameterized Meta-learning Trained with SGD
Neural Information Processing Systems (NeurIPS), 2022
Yu Huang
Yingbin Liang
Longbo Huang
MLT
168
11
0
18 Jun 2022
A General framework for PAC-Bayes Bounds for Meta-Learning
A. Rezazadeh
AI4CE
155
4
0
11 Jun 2022
On Hypothesis Transfer Learning of Functional Linear Models
International Conference on Machine Learning (ICML), 2022
Haotian Lin
M. Reimherr
229
5
0
09 Jun 2022
Meta Representation Learning with Contextual Linear Bandits
Leonardo Cella
Karim Lounici
Massimiliano Pontil
174
6
0
30 May 2022
Meta-Learning Adversarial Bandits
Maria-Florina Balcan
Keegan Harris
M. Khodak
Zhiwei Steven Wu
FedML
AAML
101
7
0
27 May 2022
Multi-Environment Meta-Learning in Stochastic Linear Bandits
International Symposium on Information Theory (ISIT), 2022
Ahmadreza Moradipari
Mohammad Ghavamzadeh
Taha Rajabzadeh
Christos Thrampoulidis
M. Alizadeh
113
5
0
12 May 2022
Nearly Minimax Algorithms for Linear Bandits with Shared Representation
Jiaqi Yang
Qi Lei
Jason D. Lee
S. Du
155
16
0
29 Mar 2022
Non-stationary Bandits and Meta-Learning with a Small Set of Optimal Arms
Javad Azizi
T. Duong
Yasin Abbasi-Yadkori
András Gyorgy
Claire Vernade
Mohammad Ghavamzadeh
278
8
0
25 Feb 2022
Trace norm regularization for multi-task learning with scarce data
Annual Conference Computational Learning Theory (COLT), 2022
Etienne Boursier
Mikhail Konobeev
Nicolas Flammarion
124
11
0
14 Feb 2022
Adaptive and Robust Multi-Task Learning
Annals of Statistics (Ann. Stat.), 2022
Yaqi Duan
Kaizheng Wang
299
35
0
10 Feb 2022
Meta Learning MDPs with Linear Transition Models
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Robert Muller
Aldo Pacchiano
165
4
0
21 Jan 2022
Learning Tensor Representations for Meta-Learning
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Samuel Deng
Yilin Guo
Daniel J. Hsu
Debmalya Mandal
FedML
OOD
SSL
140
2
0
18 Jan 2022
Generalization Bounds For Meta-Learning: An Information-Theoretic Analysis
Qi Chen
Changjian Shui
M. Marchand
163
56
0
29 Sep 2021
Dynamic Regret Analysis for Online Meta-Learning
Parvin Nazari
E. Khorram
CLL
114
5
0
29 Sep 2021
Learning-to-learn non-convex piecewise-Lipschitz functions
Maria-Florina Balcan
M. Khodak
Dravyansh Sharma
Ameet Talwalkar
110
18
0
19 Aug 2021
Learning an Explicit Hyperparameter Prediction Function Conditioned on Tasks
Jun Shu
Deyu Meng
Zongben Xu
161
11
0
06 Jul 2021
On the Power of Multitask Representation Learning in Linear MDP
Rui Lu
Gao Huang
S. Du
121
30
0
15 Jun 2021
Adaptive Clustering and Personalization in Multi-Agent Stochastic Linear Bandits
A. Ghosh
Abishek Sankararaman
Kannan Ramchandran
148
4
0
15 Jun 2021
Meta-Adaptive Nonlinear Control: Theory and Algorithms
Neural Information Processing Systems (NeurIPS), 2021
Guanya Shi
Kamyar Azizzadenesheli
Michael O'Connell
Soon-Jo Chung
Yisong Yue
242
45
0
11 Jun 2021
Conditional Meta-Learning of Linear Representations
Neural Information Processing Systems (NeurIPS), 2021
Giulia Denevi
Massimiliano Pontil
C. Ciliberto
159
13
0
30 Mar 2021
Meta-Learning with Graph Neural Networks: Methods and Applications
SIGKDD Explorations (SIGKDD Explor.), 2021
Debmalya Mandal
Sourav Medya
Brian Uzzi
Charu C. Aggarwal
AI4CE
221
24
0
27 Feb 2021
Meta-Learning with Neural Tangent Kernels
International Conference on Learning Representations (ICLR), 2021
Jiuxiang Gu
Zhenyi Wang
Jiayi Xian
Changyou Chen
Jinhui Xu
97
21
0
07 Feb 2021
Meta-strategy for Learning Tuning Parameters with Guarantees
Entropy (Entropy), 2021
Dimitri Meunier
Pierre Alquier
128
9
0
04 Feb 2021
On Data Efficiency of Meta-learning
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Maruan Al-Shedivat
Liam Li
Eric Xing
Ameet Talwalkar
FedML
106
25
0
30 Jan 2021
Investigating Bi-Level Optimization for Learning and Vision from a Unified Perspective: A Survey and Beyond
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021
Risheng Liu
Jiaxin Gao
Jin Zhang
Deyu Meng
Zhouchen Lin
AI4CE
336
252
0
27 Jan 2021
An Information-Theoretic Analysis of the Impact of Task Similarity on Meta-Learning
International Symposium on Information Theory (ISIT), 2021
Sharu Theresa Jose
Osvaldo Simeone
181
13
0
21 Jan 2021
Provably Training Overparameterized Neural Network Classifiers with Non-convex Constraints
Electronic Journal of Statistics (EJS), 2020
You-Lin Chen
Zhaoran Wang
Mladen Kolar
113
0
0
30 Dec 2020
Accelerating Distributed Online Meta-Learning via Multi-Agent Collaboration under Limited Communication
ACM Interational Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc), 2020
Sen Lin
M. Dedeoglu
Junshan Zhang
FedML
117
6
0
15 Dec 2020
Convergence Properties of Stochastic Hypergradients
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Riccardo Grazzi
Massimiliano Pontil
Saverio Salzo
235
28
0
13 Nov 2020
A Distribution-Dependent Analysis of Meta-Learning
International Conference on Machine Learning (ICML), 2020
Mikhail Konobeev
Ilja Kuzborskij
Csaba Szepesvári
OOD
176
6
0
31 Oct 2020
Meta-Learning with Adaptive Hyperparameters
Neural Information Processing Systems (NeurIPS), 2020
Sungyong Baik
Myungsub Choi
Janghoon Choi
Heewon Kim
Kyoung Mu Lee
239
145
0
31 Oct 2020
Theoretical bounds on estimation error for meta-learning
James Lucas
Mengye Ren
Irene Kameni
T. Pitassi
R. Zemel
103
12
0
14 Oct 2020
1
2
Next