ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1903.11834
  4. Cited By
Feature Fusion Encoder Decoder Network For Automatic Liver Lesion
  Segmentation

Feature Fusion Encoder Decoder Network For Automatic Liver Lesion Segmentation

28 March 2019
Xueying Chen
Rong Zhang
Pingkun Yan
    MedIm
ArXivPDFHTML

Papers citing "Feature Fusion Encoder Decoder Network For Automatic Liver Lesion Segmentation"

4 / 4 papers shown
Title
ReCal-Net: Joint Region-Channel-Wise Calibrated Network for Semantic
  Segmentation in Cataract Surgery Videos
ReCal-Net: Joint Region-Channel-Wise Calibrated Network for Semantic Segmentation in Cataract Surgery Videos
Negin Ghamsarian
M. Taschwer
Doris Putzgruber-Adamitsch
Stephanie Sarny
Y. El-Shabrawi
Klaus Schoeffmann
18
8
0
25 Sep 2021
Hybrid Cascaded Neural Network for Liver Lesion Segmentation
Hybrid Cascaded Neural Network for Liver Lesion Segmentation
Raunak Dey
Yi Hong
21
21
0
11 Sep 2019
Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural
  Network Method
Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method
Xiao Han
MedIm
36
155
0
24 Apr 2017
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
190
5,163
0
16 Sep 2016
1