ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.00045
  4. Cited By
Interpreting Black Box Models via Hypothesis Testing
v1v2v3 (latest)

Interpreting Black Box Models via Hypothesis Testing

29 March 2019
Collin Burns
Jesse Thomason
Wesley Tansey
    FAtt
ArXiv (abs)PDFHTML

Papers citing "Interpreting Black Box Models via Hypothesis Testing"

4 / 4 papers shown
Title
SurvNAM: The machine learning survival model explanation
SurvNAM: The machine learning survival model explanation
Lev V. Utkin
Egor D. Satyukov
A. Konstantinov
AAMLFAtt
93
30
0
18 Apr 2021
SurvLIME: A method for explaining machine learning survival models
SurvLIME: A method for explaining machine learning survival models
M. Kovalev
Lev V. Utkin
E. Kasimov
292
91
0
18 Mar 2020
An explanation method for Siamese neural networks
An explanation method for Siamese neural networks
Lev V. Utkin
M. Kovalev
E. Kasimov
59
15
0
18 Nov 2019
Computationally Efficient Feature Significance and Importance for
  Machine Learning Models
Computationally Efficient Feature Significance and Importance for Machine Learning Models
Enguerrand Horel
K. Giesecke
FAtt
55
9
0
23 May 2019
1