ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.00561
  4. Cited By
VINE: Visualizing Statistical Interactions in Black Box Models

VINE: Visualizing Statistical Interactions in Black Box Models

1 April 2019
M. Britton
    FAtt
ArXivPDFHTML

Papers citing "VINE: Visualizing Statistical Interactions in Black Box Models"

8 / 8 papers shown
Title
Implet: A Post-hoc Subsequence Explainer for Time Series Models
Implet: A Post-hoc Subsequence Explainer for Time Series Models
Fanyu Meng
Ziwen Kan
Shahbaz Rezaei
Z. Kong
Xin Chen
Xin Liu
AI4TS
24
0
0
13 May 2025
Why You Should Not Trust Interpretations in Machine Learning:
  Adversarial Attacks on Partial Dependence Plots
Why You Should Not Trust Interpretations in Machine Learning: Adversarial Attacks on Partial Dependence Plots
Xi Xin
Giles Hooker
Fei Huang
AAML
38
6
0
29 Apr 2024
REPID: Regional Effect Plots with implicit Interaction Detection
REPID: Regional Effect Plots with implicit Interaction Detection
J. Herbinger
Bernd Bischl
Giuseppe Casalicchio
FAtt
16
15
0
15 Feb 2022
Aligning Eyes between Humans and Deep Neural Network through Interactive
  Attention Alignment
Aligning Eyes between Humans and Deep Neural Network through Interactive Attention Alignment
Yuyang Gao
Tong Sun
Liang Zhao
Sungsoo Ray Hong
HAI
21
37
0
06 Feb 2022
Explaining Hyperparameter Optimization via Partial Dependence Plots
Explaining Hyperparameter Optimization via Partial Dependence Plots
Julia Moosbauer
J. Herbinger
Giuseppe Casalicchio
Marius Lindauer
Bernd Bischl
47
56
0
08 Nov 2021
Interactive slice visualization for exploring machine learning models
Interactive slice visualization for exploring machine learning models
C. Hurley
Mark O'Connell
Katarina Domijan
FAtt
16
9
0
18 Jan 2021
General Pitfalls of Model-Agnostic Interpretation Methods for Machine
  Learning Models
General Pitfalls of Model-Agnostic Interpretation Methods for Machine Learning Models
Christoph Molnar
Gunnar Konig
J. Herbinger
Timo Freiesleben
Susanne Dandl
Christian A. Scholbeck
Giuseppe Casalicchio
Moritz Grosse-Wentrup
B. Bischl
FAtt
AI4CE
11
135
0
08 Jul 2020
Learning Certifiably Optimal Rule Lists for Categorical Data
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
48
195
0
06 Apr 2017
1