Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.01750
Cited By
Exponentially convergent stochastic k-PCA without variance reduction
3 April 2019
Cheng Tang
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Exponentially convergent stochastic k-PCA without variance reduction"
16 / 16 papers shown
Title
Bootstrapped Representations in Reinforcement Learning
Charline Le Lan
Stephen Tu
Mark Rowland
Anna Harutyunyan
Rishabh Agarwal
Marc G. Bellemare
Will Dabney
OffRL
OOD
SSL
136
10
0
16 Jun 2023
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
Pierre Harvey Richemond
Allison C. Tam
Yunhao Tang
Florian Strub
Bilal Piot
Felix Hill
SSL
82
11
0
09 Feb 2023
A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
Charline Le Lan
Joshua Greaves
Jesse Farebrother
Mark Rowland
Fabian Pedregosa
Rishabh Agarwal
Marc G. Bellemare
110
8
0
08 Dec 2022
Stochastic Parallelizable Eigengap Dilation for Large Graph Clustering
Elise van der Pol
I. Gemp
Yoram Bachrach
Richard Everett
75
0
0
29 Jul 2022
Personalized PCA: Decoupling Shared and Unique Features
Naichen Shi
Raed Al Kontar
96
14
0
17 Jul 2022
The Symmetric Generalized Eigenvalue Problem as a Nash Equilibrium
I. Gemp
Chen Chen
Brian McWilliams
55
0
0
10 Jun 2022
Self-consistent Gradient-like Eigen Decomposition in Solving Schrödinger Equations
Xihan Li
Xiang Chen
Rasul Tutunov
Haitham Bou-Ammar
Lei Wang
Jun Wang
68
0
0
03 Feb 2022
Speeding up PCA with priming
Bálint Máté
Franccois Fleuret
54
0
0
08 Sep 2021
FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component Analysis
Arpita Gang
W. Bajwa
96
17
0
27 Aug 2021
EigenGame Unloaded: When playing games is better than optimizing
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
67
13
0
08 Feb 2021
EigenGame: PCA as a Nash Equilibrium
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
114
48
0
01 Oct 2020
Regularized linear autoencoders recover the principal components, eventually
Xuchan Bao
James Lucas
Sushant Sachdeva
Roger C. Grosse
103
30
0
13 Jul 2020
A General Framework for Analyzing Stochastic Dynamics in Learning Algorithms
Chi-Ning Chou
Juspreet Singh Sandhu
Mien Brabeeba Wang
Tiancheng Yu
60
4
0
11 Jun 2020
Scaling-up Distributed Processing of Data Streams for Machine Learning
M. Nokleby
Haroon Raja
W. Bajwa
69
15
0
18 May 2020
Distributed Stochastic Algorithms for High-rate Streaming Principal Component Analysis
Haroon Raja
W. Bajwa
74
11
0
04 Jan 2020
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint
Ehsan Amid
Manfred K. Warmuth
82
11
0
11 Sep 2019
1