ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.01750
  4. Cited By
Exponentially convergent stochastic k-PCA without variance reduction

Exponentially convergent stochastic k-PCA without variance reduction

3 April 2019
Cheng Tang
ArXiv (abs)PDFHTML

Papers citing "Exponentially convergent stochastic k-PCA without variance reduction"

16 / 16 papers shown
Title
Bootstrapped Representations in Reinforcement Learning
Bootstrapped Representations in Reinforcement Learning
Charline Le Lan
Stephen Tu
Mark Rowland
Anna Harutyunyan
Rishabh Agarwal
Marc G. Bellemare
Will Dabney
OffRLOODSSL
136
10
0
16 Jun 2023
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
Pierre Harvey Richemond
Allison C. Tam
Yunhao Tang
Florian Strub
Bilal Piot
Felix Hill
SSL
82
11
0
09 Feb 2023
A Novel Stochastic Gradient Descent Algorithm for Learning Principal
  Subspaces
A Novel Stochastic Gradient Descent Algorithm for Learning Principal Subspaces
Charline Le Lan
Joshua Greaves
Jesse Farebrother
Mark Rowland
Fabian Pedregosa
Rishabh Agarwal
Marc G. Bellemare
110
8
0
08 Dec 2022
Stochastic Parallelizable Eigengap Dilation for Large Graph Clustering
Stochastic Parallelizable Eigengap Dilation for Large Graph Clustering
Elise van der Pol
I. Gemp
Yoram Bachrach
Richard Everett
75
0
0
29 Jul 2022
Personalized PCA: Decoupling Shared and Unique Features
Personalized PCA: Decoupling Shared and Unique Features
Naichen Shi
Raed Al Kontar
96
14
0
17 Jul 2022
The Symmetric Generalized Eigenvalue Problem as a Nash Equilibrium
The Symmetric Generalized Eigenvalue Problem as a Nash Equilibrium
I. Gemp
Chen Chen
Brian McWilliams
55
0
0
10 Jun 2022
Self-consistent Gradient-like Eigen Decomposition in Solving
  Schrödinger Equations
Self-consistent Gradient-like Eigen Decomposition in Solving Schrödinger Equations
Xihan Li
Xiang Chen
Rasul Tutunov
Haitham Bou-Ammar
Lei Wang
Jun Wang
68
0
0
03 Feb 2022
Speeding up PCA with priming
Speeding up PCA with priming
Bálint Máté
Franccois Fleuret
54
0
0
08 Sep 2021
FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component
  Analysis
FAST-PCA: A Fast and Exact Algorithm for Distributed Principal Component Analysis
Arpita Gang
W. Bajwa
96
17
0
27 Aug 2021
EigenGame Unloaded: When playing games is better than optimizing
EigenGame Unloaded: When playing games is better than optimizing
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
67
13
0
08 Feb 2021
EigenGame: PCA as a Nash Equilibrium
EigenGame: PCA as a Nash Equilibrium
I. Gemp
Brian McWilliams
Claire Vernade
T. Graepel
114
48
0
01 Oct 2020
Regularized linear autoencoders recover the principal components,
  eventually
Regularized linear autoencoders recover the principal components, eventually
Xuchan Bao
James Lucas
Sushant Sachdeva
Roger C. Grosse
103
30
0
13 Jul 2020
A General Framework for Analyzing Stochastic Dynamics in Learning
  Algorithms
A General Framework for Analyzing Stochastic Dynamics in Learning Algorithms
Chi-Ning Chou
Juspreet Singh Sandhu
Mien Brabeeba Wang
Tiancheng Yu
60
4
0
11 Jun 2020
Scaling-up Distributed Processing of Data Streams for Machine Learning
Scaling-up Distributed Processing of Data Streams for Machine Learning
M. Nokleby
Haroon Raja
W. Bajwa
69
15
0
18 May 2020
Distributed Stochastic Algorithms for High-rate Streaming Principal
  Component Analysis
Distributed Stochastic Algorithms for High-rate Streaming Principal Component Analysis
Haroon Raja
W. Bajwa
74
11
0
04 Jan 2020
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality
  Constraint
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint
Ehsan Amid
Manfred K. Warmuth
82
11
0
11 Sep 2019
1