Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.03537
Cited By
v1
v2 (latest)
Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Non-Convex Optimization
6 April 2019
Mahesh Chandra Mukkamala
Peter Ochs
Thomas Pock
Shoham Sabach
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Convex-Concave Backtracking for Inertial Bregman Proximal Gradient Algorithms in Non-Convex Optimization"
7 / 7 papers shown
Title
Diffusion at Absolute Zero: Langevin Sampling Using Successive Moreau Envelopes [conference paper]
Andreas Habring
Alexander Falk
Thomas Pock
106
0
0
03 Feb 2025
Lifted Bregman Training of Neural Networks
Xiaoyu Wang
Martin Benning
39
6
0
18 Aug 2022
A Refined Inertial DC Algorithm for DC Programming
Yu You
Yi-Shuai Niu
19
7
0
30 Apr 2021
Global Convergence of Model Function Based Bregman Proximal Minimization Algorithms
Mahesh Chandra Mukkamala
M. Fadili
Peter Ochs
71
8
0
24 Dec 2020
Inexact-ADMM Based Federated Meta-Learning for Fast and Continual Edge Learning
Sheng Yue
Ju Ren
Jiang Xin
Sen Lin
Junshan Zhang
FedML
70
44
0
16 Dec 2020
Bregman Proximal Framework for Deep Linear Neural Networks
Mahesh Chandra Mukkamala
Felix Westerkamp
Emanuel Laude
Daniel Cremers
Peter Ochs
77
7
0
08 Oct 2019
Beyond Alternating Updates for Matrix Factorization with Inertial Bregman Proximal Gradient Algorithms
Mahesh Chandra Mukkamala
Peter Ochs
78
23
0
22 May 2019
1