ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.03646
  4. Cited By
Policy Gradient Search: Online Planning and Expert Iteration without
  Search Trees

Policy Gradient Search: Online Planning and Expert Iteration without Search Trees

7 April 2019
Thomas W. Anthony
Robert Nishihara
Philipp Moritz
Tim Salimans
John Schulman
ArXivPDFHTML

Papers citing "Policy Gradient Search: Online Planning and Expert Iteration without Search Trees"

4 / 4 papers shown
Title
On-line Policy Improvement using Monte-Carlo Search
On-line Policy Improvement using Monte-Carlo Search
Gerald Tesauro
Gregory R. Galperin
83
270
0
09 Jan 2025
Monte-Carlo Tree Search as Regularized Policy Optimization
Monte-Carlo Tree Search as Regularized Policy Optimization
Jean-Bastien Grill
Florent Altché
Yunhao Tang
Thomas Hubert
Michal Valko
Ioannis Antonoglou
Rémi Munos
19
73
0
24 Jul 2020
Guiding Deep Molecular Optimization with Genetic Exploration
Guiding Deep Molecular Optimization with Genetic Exploration
Sungsoo Ahn
Junsup Kim
Hankook Lee
Jinwoo Shin
29
70
0
04 Jul 2020
Combining Q-Learning and Search with Amortized Value Estimates
Combining Q-Learning and Search with Amortized Value Estimates
Jessica B. Hamrick
V. Bapst
Alvaro Sanchez-Gonzalez
Tobias Pfaff
T. Weber
Lars Buesing
Peter W. Battaglia
OffRL
24
47
0
05 Dec 2019
1