Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.03737
Cited By
A unifying approach for doubly-robust
ℓ
1
\ell_1
ℓ
1
regularized estimation of causal contrasts
7 April 2019
Ezequiel Smucler
A. Rotnitzky
J. M. Robins
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A unifying approach for doubly-robust $\ell_1$ regularized estimation of causal contrasts"
9 / 9 papers shown
Title
Treatment Effect Estimation with Observational Network Data using Machine Learning
Corinne Emmenegger
Meta-Lina Spohn
Timon Elmer
Peter Buhlmann
CML
60
3
1
20 Jan 2025
Reconciling model-X and doubly robust approaches to conditional independence testing
Ziang Niu
Abhinav Chakraborty
O. Dukes
Eugene Katsevich
23
7
0
27 Nov 2022
Assumption-lean inference for generalised linear model parameters
S. Vansteelandt
O. Dukes
CML
21
49
0
15 Jun 2020
Localized Debiased Machine Learning: Efficient Inference on Quantile Treatment Effects and Beyond
Nathan Kallus
Xiaojie Mao
Masatoshi Uehara
25
25
0
30 Dec 2019
Efficient adjustment sets for population average treatment effect estimation in non-parametric causal graphical models
A. Rotnitzky
Ezequiel Smucler
CML
11
30
0
01 Dec 2019
Double-estimation-friendly inference for high-dimensional misspecified models
Rajen Dinesh Shah
Peter Buhlmann
18
10
0
24 Sep 2019
Efficiently Breaking the Curse of Horizon in Off-Policy Evaluation with Double Reinforcement Learning
Nathan Kallus
Masatoshi Uehara
OffRL
14
87
0
12 Sep 2019
Characterization of parameters with a mixed bias property
A. Rotnitzky
Ezequiel Smucler
J. M. Robins
14
66
0
07 Apr 2019
Automatic Debiased Machine Learning of Causal and Structural Effects
Victor Chernozhukov
Whitney Newey
Rahul Singh
CML
AI4CE
24
103
0
14 Sep 2018
1