ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.03936
  4. Cited By
Wasserstein Adversarial Regularization (WAR) on label noise
v1v2v3 (latest)

Wasserstein Adversarial Regularization (WAR) on label noise

8 April 2019
Kilian Fatras
B. Bushan
Sylvain Lobry
Rémi Flamary
D. Tuia
Nicolas Courty
ArXiv (abs)PDFHTML

Papers citing "Wasserstein Adversarial Regularization (WAR) on label noise"

18 / 18 papers shown
Title
Reliable Programmatic Weak Supervision with Confidence Intervals for Label Probabilities
Reliable Programmatic Weak Supervision with Confidence Intervals for Label ProbabilitiesIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2025
Verónica Álvarez
Santiago Mazuelas
Steven An
Sanjoy Dasgupta
32
0
0
05 Aug 2025
MoMBS: Mixed-order minibatch sampling enhances model training from diverse-quality images
MoMBS: Mixed-order minibatch sampling enhances model training from diverse-quality images
Han Li
Hu Han
S.Kevin Zhou
151
0
0
24 May 2025
Improving Noise Robustness through Abstractions and its Impact on
  Machine Learning
Improving Noise Robustness through Abstractions and its Impact on Machine Learning
Alfredo Ibias
Karol Capala
Varun Ravi Varma
Anna Drozdz
José L. R. Sousa
AAML
63
1
0
12 Jun 2024
Better, Not Just More: Data-Centric Machine Learning for Earth Observation
Better, Not Just More: Data-Centric Machine Learning for Earth ObservationIEEE Geoscience and Remote Sensing Magazine (GRSM), 2023
R. Roscher
M. Rußwurm
Caroline Gevaert
Michael C. Kampffmeyer
J. A. dos Santos
...
Ronny Hansch
Stine Hansen
Keiller Nogueira
Jonathan Prexl
D. Tuia
282
20
0
08 Dec 2023
Towards Generalizable Deepfake Detection by Primary Region
  Regularization
Towards Generalizable Deepfake Detection by Primary Region Regularization
Harry Cheng
Yangyang Guo
Tianyi Wang
Liqiang Nie
Mohan S. Kankanhalli
177
2
0
24 Jul 2023
Recent Advances in Optimal Transport for Machine Learning
Recent Advances in Optimal Transport for Machine LearningIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Eduardo Fernandes Montesuma
Fred-Maurice Ngole-Mboula
Antoine Souloumiac
OODOT
186
63
0
28 Jun 2023
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization
  Paths
No Wrong Turns: The Simple Geometry Of Neural Networks Optimization PathsInternational Conference on Machine Learning (ICML), 2023
Charles Guille-Escuret
Hiroki Naganuma
Kilian Fatras
Ioannis Mitliagkas
122
5
0
20 Jun 2023
Transferring Annotator- and Instance-dependent Transition Matrix for
  Learning from Crowds
Transferring Annotator- and Instance-dependent Transition Matrix for Learning from CrowdsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2023
Shikun Li
Xiaobo Xia
Jiankang Deng
Shiming Ge
Tongliang Liu
188
18
0
05 Jun 2023
Artificial intelligence to advance Earth observation: a perspective
Artificial intelligence to advance Earth observation: a perspectiveIEEE Geoscience and Remote Sensing Magazine (GRSM), 2023
D. Tuia
Konrad Schindler
Begüm Demir
Gustau Camps-Valls
Xiao Xiang Zhu
...
Mihai Datcu
Jorge-Arnulfo Quiané-Ruiz
Volker Markl
Bertrand Le Saux
Rochelle Schneider
193
29
0
15 May 2023
PopulAtion Parameter Averaging (PAPA)
PopulAtion Parameter Averaging (PAPA)
Alexia Jolicoeur-Martineau
Emy Gervais
Kilian Fatras
Yan Zhang
Damien Scieur
MoMe
337
24
0
06 Apr 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial
  Robustness
It Is All About Data: A Survey on the Effects of Data on Adversarial RobustnessACM Computing Surveys (ACM Comput. Surv.), 2023
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILMAAML
172
13
0
17 Mar 2023
Mitigating Memorization of Noisy Labels by Clipping the Model Prediction
Mitigating Memorization of Noisy Labels by Clipping the Model PredictionInternational Conference on Machine Learning (ICML), 2022
Jianguo Huang
Huiping Zhuang
Renchunzi Xie
Lei Feng
Gang Niu
Bo An
Shouqing Yang
VLMNoLa
314
42
0
08 Dec 2022
On making optimal transport robust to all outliers
On making optimal transport robust to all outliers
Kilian Fatras
OT
110
0
0
23 Jun 2022
Optimal transport meets noisy label robust loss and MixUp regularization
  for domain adaptation
Optimal transport meets noisy label robust loss and MixUp regularization for domain adaptation
Kilian Fatras
Hiroki Naganuma
Ioannis Mitliagkas
OOD
100
8
0
22 Jun 2022
Meta Optimal Transport
Meta Optimal TransportInternational Conference on Machine Learning (ICML), 2022
Brandon Amos
Samuel N. Cohen
Giulia Luise
I. Redko
OT
203
27
0
10 Jun 2022
Learning to Rectify for Robust Learning with Noisy Labels
Learning to Rectify for Robust Learning with Noisy Labels
Haoliang Sun
Chenhui Guo
Qinglai Wei
Zhongyi Han
Yilong Yin
NoLa
212
40
0
08 Nov 2021
Open-set Label Noise Can Improve Robustness Against Inherent Label Noise
Open-set Label Noise Can Improve Robustness Against Inherent Label NoiseNeural Information Processing Systems (NeurIPS), 2021
Jianguo Huang
Lue Tao
Renchunzi Xie
Bo An
NoLa
207
98
0
21 Jun 2021
Combating noisy labels by agreement: A joint training method with
  co-regularization
Combating noisy labels by agreement: A joint training method with co-regularizationComputer Vision and Pattern Recognition (CVPR), 2020
Jianguo Huang
Lei Feng
Xiangyu Chen
Bo An
NoLa
719
596
0
05 Mar 2020
1