Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.04058
Cited By
A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations
2 April 2019
R. Tipireddy
P. Perdikaris
P. Stinis
A. Tartakovsky
PINN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A comparative study of physics-informed neural network models for learning unknown dynamics and constitutive relations"
6 / 6 papers shown
Title
PhySRNet: Physics informed super-resolution network for application in computational solid mechanics
Rajat Arora
AI4CE
83
10
0
30 Jun 2022
Physics-informed neural networks for modeling rate- and temperature-dependent plasticity
Rajat Arora
P. Kakkar
Biswadip Dey
Amit Chakraborty
PINN
AI4CE
114
20
0
20 Jan 2022
HyperPINN: Learning parameterized differential equations with physics-informed hypernetworks
Filipe de Avila Belbute-Peres
Yi-fan Chen
Fei Sha
PINN
70
40
0
28 Oct 2021
Physics-constrained deep neural network method for estimating parameters in a redox flow battery
Qizhi He
P. Stinis
A. Tartakovsky
64
34
0
21 Jun 2021
Universal Differential Equations for Scientific Machine Learning
Christopher Rackauckas
Yingbo Ma
Julius Martensen
Collin Warner
K. Zubov
R. Supekar
Dominic J. Skinner
Ali Ramadhan
Alan Edelman
AI4CE
115
599
0
13 Jan 2020
Discovery of Dynamics Using Linear Multistep Methods
Rachael Keller
Q. Du
83
36
0
29 Dec 2019
1