ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.05506
23
106

Membership Inference Attacks on Sequence-to-Sequence Models: Is My Data In Your Machine Translation System?

11 April 2019
Sorami Hisamoto
Matt Post
Kevin Duh
    MIACV
    SLR
ArXivPDFHTML
Abstract

Data privacy is an important issue for "machine learning as a service" providers. We focus on the problem of membership inference attacks: given a data sample and black-box access to a model's API, determine whether the sample existed in the model's training data. Our contribution is an investigation of this problem in the context of sequence-to-sequence models, which are important in applications such as machine translation and video captioning. We define the membership inference problem for sequence generation, provide an open dataset based on state-of-the-art machine translation models, and report initial results on whether these models leak private information against several kinds of membership inference attacks.

View on arXiv
Comments on this paper