ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07454
21
0

Point cloud registration: matching a maximal common subset on pointclouds with noise (with 2D implementation)

16 April 2019
Jorge Arce Garro
David Jiménez López
    3DPC
ArXiv (abs)PDFHTML
Abstract

We analyze the problem of determining whether 2 given point clouds in 2D, with any distinct cardinality and any number of outliers, have subsets of the same size that can be matched via a rigid motion. This problem is important, for example, in the application of fingerprint matching with incomplete data. We propose an algorithm that, under assumptions on the noise tolerance, allows to find corresponding subclouds of the maximum possible size. Our procedure optimizes a potential energy function to do so, which was first inspired in the potential energy interaction that occurs between point charges in electrostatics.

View on arXiv
Comments on this paper