ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.07964
  4. Cited By
3D Shape Synthesis for Conceptual Design and Optimization Using
  Variational Autoencoders

3D Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders

16 April 2019
Wentai Zhang
Zhangsihao Yang
Haoliang Jiang
Suyash Nigam
Soji Yamakawa
T. Furuhata
K. Shimada
L. Kara
    3DV
ArXivPDFHTML

Papers citing "3D Shape Synthesis for Conceptual Design and Optimization Using Variational Autoencoders"

9 / 9 papers shown
Title
Data-driven topology design based on principal component analysis for 3D
  structural design problems
Data-driven topology design based on principal component analysis for 3D structural design problems
Jun Yang
Kentaro Yaji
S. Yamasaki
28
0
0
03 Sep 2024
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
33
75
0
07 May 2023
Learning to design without prior data: Discovering generalizable design
  strategies using deep learning and tree search
Learning to design without prior data: Discovering generalizable design strategies using deep learning and tree search
Ayush Raina
Jonathan Cagan
Christopher McComb
AI4CE
25
9
0
28 Nov 2022
FakeNews: GAN-based generation of realistic 3D volumetric data -- A
  systematic review and taxonomy
FakeNews: GAN-based generation of realistic 3D volumetric data -- A systematic review and taxonomy
André Ferreira
Jianning Li
Kelsey L. Pomykala
Jens Kleesiek
Victor Alves
Jan Egger
MedIm
29
22
0
04 Jul 2022
Deep Generative Models in Engineering Design: A Review
Deep Generative Models in Engineering Design: A Review
Lyle Regenwetter
A. Nobari
Faez Ahmed
3DV
AI4CE
34
175
0
21 Oct 2021
Design Strategy Network: A deep hierarchical framework to represent
  generative design strategies in complex action spaces
Design Strategy Network: A deep hierarchical framework to represent generative design strategies in complex action spaces
Ayush Raina
Jonathan Cagan
Christopher McComb
AI4CE
25
13
0
07 Oct 2021
Range-GAN: Range-Constrained Generative Adversarial Network for
  Conditioned Design Synthesis
Range-GAN: Range-Constrained Generative Adversarial Network for Conditioned Design Synthesis
A. Nobari
Wei Chen
Faez Ahmed
GAN
AI4CE
19
11
0
10 Mar 2021
MO-PaDGAN: Reparameterizing Engineering Designs for Augmented
  Multi-objective Optimization
MO-PaDGAN: Reparameterizing Engineering Designs for Augmented Multi-objective Optimization
Wei Chen
Faez Ahmed
AI4CE
33
34
0
15 Sep 2020
Data-driven topology design using a deep generative model
Data-driven topology design using a deep generative model
S. Yamasaki
Kentaro Yaji
K. Fujita
AI4CE
20
27
0
08 Jun 2020
1