ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1904.08825
  4. Cited By
Generating Training Data for Denoising Real RGB Images via Camera
  Pipeline Simulation

Generating Training Data for Denoising Real RGB Images via Camera Pipeline Simulation

18 April 2019
Ronnachai Jaroensri
Camille Biscarrat
M. Aittala
F. Durand
ArXiv (abs)PDFHTML

Papers citing "Generating Training Data for Denoising Real RGB Images via Camera Pipeline Simulation"

12 / 12 papers shown
BVI-Artefact: An Artefact Detection Benchmark Dataset for Streamed
  Videos
BVI-Artefact: An Artefact Detection Benchmark Dataset for Streamed VideosPicture Coding Symposium (PCS), 2023
Chen Feng
Duolikun Danier
Fan Zhang
Alex Mackin
Andy Collins
David Bull
113
4
0
14 Dec 2023
One-Pot Multi-Frame Denoising
One-Pot Multi-Frame DenoisingBritish Machine Vision Conference (BMVC), 2023
Lujia Jin
Shi-Jing Zhao
Lei Zhu
Qian Chen
Yanye Lu
124
1
0
18 Feb 2023
Data Models for Dataset Drift Controls in Machine Learning With Optical
  Images
Data Models for Dataset Drift Controls in Machine Learning With Optical Images
Luis Oala
Marco Aversa
Gabriel Nobis
Kurt Willis
Yoan Neuenschwander
...
E. Pomarico
Wojciech Samek
Roderick Murray-Smith
Christoph Clausen
B. Sanguinetti
301
7
0
04 Nov 2022
Learning Task-Oriented Flows to Mutually Guide Feature Alignment in
  Synthesized and Real Video Denoising
Learning Task-Oriented Flows to Mutually Guide Feature Alignment in Synthesized and Real Video Denoising
Jingyun Liang
Qin Wang
Christos Sakaridis
Yulun Zhang
Lucas Beerens
Radu Timofte
Luc Van Gool
278
8
0
25 Aug 2022
Self-supervision versus synthetic datasets: which is the lesser evil in
  the context of video denoising?
Self-supervision versus synthetic datasets: which is the lesser evil in the context of video denoising?
Valéry Dewil
Aranud Barral
Gabriele Facciolo
Pablo Arias
182
6
0
25 Apr 2022
Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A
  Color Image Denoiser
Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image DenoiserNeurocomputing (Neurocomputing), 2021
Yue Cao
Xiaohe Wu
Shuran Qi
Xiao-Chang Liu
Zhongqin Wu
W. Zuo
198
16
0
18 Mar 2021
Memory-Efficient Hierarchical Neural Architecture Search for Image
  Restoration
Memory-Efficient Hierarchical Neural Architecture Search for Image RestorationInternational Journal of Computer Vision (IJCV), 2020
Haokui Zhang
Ying Li
Hao Chen
Chengrong Gong
Zongwen Bai
Chunhua Shen
306
16
0
24 Dec 2020
Dual Adversarial Network: Toward Real-world Noise Removal and Noise
  Generation
Dual Adversarial Network: Toward Real-world Noise Removal and Noise GenerationEuropean Conference on Computer Vision (ECCV), 2020
Zongsheng Yue
Qian Zhao
Lei Zhang
Deyu Meng
DiffM
193
241
0
12 Jul 2020
Deep Learning on Image Denoising: An overview
Deep Learning on Image Denoising: An overviewNeural Networks (NN), 2019
Chunwei Tian
Lunke Fei
Wenxian Zheng
Yong-mei Xu
W. Zuo
Chia-Wen Lin
539
871
0
31 Dec 2019
Memory-Efficient Hierarchical Neural Architecture Search for Image
  Denoising
Memory-Efficient Hierarchical Neural Architecture Search for Image DenoisingComputer Vision and Pattern Recognition (CVPR), 2019
Haokui Zhang
Ying Li
Hao Chen
Chunhua Shen
AI4CE
151
60
0
18 Sep 2019
Index Network
Index Network
Hao Lu
Yutong Dai
Chunhua Shen
Songcen Xu
SSeg
101
0
0
11 Aug 2019
Dirty Pixels: Towards End-to-End Image Processing and Perception
Dirty Pixels: Towards End-to-End Image Processing and PerceptionACM Transactions on Graphics (TOG), 2017
Steven Diamond
Vincent Sitzmann
Frank D. Julca-Aguilar
Stephen P. Boyd
Gordon Wetzstein
Felix Heide
349
65
0
23 Jan 2017
1