Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1904.10120
Cited By
Semi-Cyclic Stochastic Gradient Descent
23 April 2019
Hubert Eichner
Tomer Koren
H. B. McMahan
Nathan Srebro
Kunal Talwar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Semi-Cyclic Stochastic Gradient Descent"
17 / 17 papers shown
Title
Distributed Personalized Empirical Risk Minimization
Yuyang Deng
Mohammad Mahdi Kamani
Pouria Mahdavinia
M. Mahdavi
23
4
0
26 Oct 2023
Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution Shifts
Kun Jin
Tongxin Yin
Zhong Chen
Zeyu Sun
Xueru Zhang
Yang Liu
Mingyan D. Liu
OOD
FedML
15
6
0
08 May 2023
Does Federated Learning Really Need Backpropagation?
H. Feng
Tianyu Pang
Chao Du
Wei-Neng Chen
Shuicheng Yan
Min-Bin Lin
FedML
26
10
0
28 Jan 2023
Federated Learning for Data Streams
Othmane Marfoq
Giovanni Neglia
Laetitia Kameni
Richard Vidal
FedML
21
11
0
04 Jan 2023
PersA-FL: Personalized Asynchronous Federated Learning
Taha Toghani
Soomin Lee
César A. Uribe
FedML
34
6
0
03 Oct 2022
Federated learning: Applications, challenges and future directions
Subrato Bharati
Hossain Mondal
Prajoy Podder
V. B. Surya Prasath
FedML
39
52
0
18 May 2022
Architecture Agnostic Federated Learning for Neural Networks
Disha Makhija
Xing Han
Nhat Ho
Joydeep Ghosh
FedML
21
40
0
15 Feb 2022
An Energy Consumption Model for Electrical Vehicle Networks via Extended Federated-learning
Shiliang Zhang
11
2
0
13 Nov 2021
Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing
M. Khodak
Renbo Tu
Tian Li
Liam Li
Maria-Florina Balcan
Virginia Smith
Ameet Talwalkar
FedML
35
78
0
08 Jun 2021
Fast Federated Learning in the Presence of Arbitrary Device Unavailability
Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
FedML
22
95
0
08 Jun 2021
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
Slavomír Hanzely
Samuel Horváth
Peter Richtárik
FedML
38
186
0
05 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
24
0
0
26 Aug 2020
A Review of Privacy-preserving Federated Learning for the Internet-of-Things
Christopher Briggs
Zhong Fan
Péter András
16
14
0
24 Apr 2020
Adaptive Personalized Federated Learning
Yuyang Deng
Mohammad Mahdi Kamani
M. Mahdavi
FedML
212
542
0
30 Mar 2020
Distributed Non-Convex Optimization with Sublinear Speedup under Intermittent Client Availability
Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Fan Wu
Guihai Chen
Shaojie Tang
Zhihua Wu
FedML
36
37
0
18 Feb 2020
Learning to Detect Malicious Clients for Robust Federated Learning
Suyi Li
Yong Cheng
Wei Wang
Yang Liu
Tianjian Chen
AAML
FedML
19
223
0
01 Feb 2020
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
14
830
0
08 Oct 2019
1